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Abstract

Water pipeline failures in urban networks are a significant source of non-revenue water, service disruptions,
and high maintenance costs. This study develops a machine learning model to predict pipeline failure
probabilities and inform risk-based maintenance strategies. Trained on real-world assets and geospatial data
from 2010 to 2025, the model incorporates standard pipe attributes — such as material, age, diameter, network
type, and maintenance history — alongside spatially derived indicators of the surrounding infrastructure.
Notably, it quantifies the predictive impact of adjacent infrastructure systems, including electricity grids, gas
pipelines, district heating, sewage systems, and roads, utilizing spatial buffering and overlay techniques.
Several of these cross-utility features, particularly road category, electricity voltage, and sewer type, showed
meaningful predictive importance, reflecting their indirect but consistent influence on the risk of pipe failure.
The ML model, built with the XGBoost algorithm and validated through stratified K-fold cross-validation,
achieved high performance (ROC AUC: 0.9102, recall: 0.7750, accuracy: 0.8750). Despite lower precision
due to class imbalance, the F1 score (0.2261) and LogLoss (0.2500) confirm its reliability. This study
introduces a novel, spatially enriched approach to failure prediction, advancing urban infrastructure
management through context-aware, data-driven insights.

Keywords: Water distribution systems, Pipe failure prediction, Machine learning, XGBoost, Spatial analysis,
condition assessment.

Izvleéek

Okvare vodovodnih cevi v urbanih omrezjih SO pomemben vzrok komercialnih izgub zaradi neobracunane
vode, motenj v oskrbi in visokih stroskov vzdrzevanja. Ta Studija razvija model strojnega ucenja za napoved
verjetnosti okvar cevovodov in podporo strategijam vzdrzevanja, temeljeim na tveganju. Model, izurjen na
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podatkih o infrastrukturi in geoprostorskih podatkih iz obdobja 20102025, vkljucuje standardne lastnosti cevi
— kot so material, starost, premer, vrsta omrezja in zgodovina vzdrzevanja — ter prostorsko izpeljane kazalnike
infrastrukture v neposredni soses¢ini. Posebej pomembno je, da model kvantificira napovedno vrednost
sosednjih infrastrukturnih sistemov, vklju¢no z elektricnim omrezjem, plinovodi, daljinskim ogrevanjem,
kanalizacijo in cestnim omreZjem, z uporabo prostorske analize sose$¢ine in tehnik prekrivanja. Vec¢ teh
medinfrastrukturnih znacilnosti, zlasti kategorija ceste, napetost elektricnega omrezja in tip kanalizacije, je
pokazalo pomemben napovedni vpliv, kar odraza njihovo posredno, a dosledno povezavo z verjetnostjo okvare
cevi. Model strojnega ucenja, zasnovan z algoritmom XGBoost in validiran s slojevitim navzkriznim
preverjanjem (K-fold), je dosegel visoko zmogljivost (ROC AUC: 0,9102; priklic: 0,7750; natan¢nost:
0,8750). Kljub nizji preciznosti zaradi neravnovesja razredov rezultat F1 (0,2261) in LoglLoss (0,2500)
potrjujeta njegovo zanesljivost. Raziskava predstavlja nov, s prostorskimi podatki obogaten pristop k
napovedovanju okvar in prispeva k naprednemu, na podatkih temeljecem upravljanju urbane infrastrukture.

Klju¢ne besede: vodovodni sistemi, napovedovanje okvar cevovodov, strojno ucenje, XGBoost, prostorska
analiza, ocenjevanje stanja.

1. Introduction depending on the state of the water supply networks,
and ranges from 8% to 57% in Europe (European
Commission, 2025). In Slovenia, data on NRW
have been available since 2010, following the
introduction of the national reporting system, the
Information System of Public Environmental
Protection Services (IJSVO) (MOPE, 2025). At the
national level, NRW is increasing and accounts for
29.4%, according to the latest data from 2023
(SURS, 2025). While water losses are often viewed
through an economic lens — primarily due to the
costs associated with treatment and pumping — they
also pose significant challenges for water system
management and public health. Addressing water
losses effectively requires a comprehensive strategy
developed by the system operator and approved by
the owner to find an appropriate balance between
repair, rehabilitation, and replacement of
deteriorated pipelines.

Water supply systems (WSS) are vital components
of public infrastructure, providing clean drinking
water to residents, a key factor for human well-
being and societal prosperity. These systems, which
include wells, reservoirs, pumps, and pipelines, are
becoming increasingly challenging to manage due
to, among other things, the need to maintain
supplies amid changing urban settlements,
infrastructure investment, and increased regulatory
pressure (Ganjidoost et al., 2022). In addition to
water availability and quality, the deterioration of
WSS pipelines is a growing concern. Environmental
conditions, material ageing, and operational stress
contribute to this deterioration, leading to water
losses, increased maintenance costs, and reduced
service quality (Misiunas, 2006). The challenges
faced by water utilities, particularly those related to
incomplete or outdated infrastructure data, further
complicate proactive asset management (Phan et al., In recent decades, utilities and researchers have
2019; Ganjidoost et al., 2022). developed various models to assess pipeline
conditions and predict failure using indirect
indicators. These tools are crucial for prioritizing
rehabilitation efforts when resources are limited and
complete pipe replacement is not economically
feasible (Large et al., 2015; Le Gat et al., 2023).
However, predicting pipe deterioration is not solely
reliant on one feature. The presence of older pipes
that still function adequately complicates the use of
age as the sole predictor, highlighting the need for
multifactorial assessment approaches. Condition
assessment methods and risk-based planning are
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One of the most important technical indicators to
follow in WSS performance is non-revenue water
(hereafter referred to as NRW), and it is one of the
most significant challenges for water utility
operators. NRW is the difference between the
abstracted amount of water and the amount of water
sold. NRW is composed of three primary
components: real losses, apparent losses, and
unbilled consumption. The proportion of NRW
varies considerably from country to country,
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increasingly  integrating  GIS-based  spatial
modelling and data analysis. These tools are
instrumental in understanding deterioration patterns
through visualizing the spatial distribution of
deterioration factors and optimizing investment
strategies by identifying the most critical areas for
rehabilitation (Mackey et al., 2014; Ganjidoost et
al., 2022).

Various models have been developed to assist in
pipeline renewal decisions, each with distinct data
needs, methodologies, and optimization goals (Liu
et al., 2012; Bakhtawar et al., 2025). A key
challenge is to determine which pipe segments
should be prioritized for rehabilitation. According
to Bakhtawar et al. (2025), pipe condition
assessment approaches typically fall into two
categories: physical or statistical. Physical models
rely on structural and environmental inputs, while
statistical models leverage historical data to predict
failures. These include deterministic models, which
are based on fixed input values from laboratory tests
or standards, and probabilistic models, which
estimate the probability of failure or remaining
useful life (Rajani & Kleiner, 2001; Rezaei et al.,
2015; Bakhtawar et al., 2025). Unlike deterministic
models, probabilistic methods account for
uncertainty, offering a range of likely outcomes
rather than a single estimate. Due to the limited and
costly data requirements, statistical or empirical
models are often used as an alternative. These rely
on historical default data to predict future trends
(Kleiner & Rajani, 2001) and can be deterministic
or probabilistic. Deterministic approaches group
pipes by similar characteristics and model failure
patterns based on age and history, while
probabilistic models estimate the lifetime or
probability of failure (Misiunas, 2006).

Over the last few decades, machine learning (ML)
approaches have emerged as efficient tools, offering
improved prediction power and adaptability in
handling complex, nonlinear interdependencies
between variables. Recent advancements in ML
have significantly improved the prediction of
pipeline failures and leak detection (Latifi et al.,
2024). Standard statistical models, though
sometimes helpful, suffer from data insufficiency
and a lack of adaptability as they struggle with
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complex, nonlinear interdependencies between
variables (Cabral et al., 2023; Mohammadagha
etal., 2025).

In comparison, ML algorithms such as gradient
boosting (e.g. XGBoost) have demonstrated
significant superiority in terms of failure prediction,
particularly with imbalanced datasets. In a
comparative study, Asadi (2024) found that
XGBoost achieved a recall rate of 0.795 —
substantially higher than the 0.683 recorded by
logistic regression — highlighting its effectiveness in
identifying vulnerable pipeline segments. Warad et
al. (2024) reported that their ensemble learning
model, optimized via Bayesian tuning, achieved an
exceptionally low root mean squared error (RMSE)
of 0.0023, indicating high prediction accuracy.

Despite their potential, the development and
widespread application of ML models are still
limited, primarily due to data availability, the
variability of degradation mechanisms, the need for
user-specific calibration, and a lack of data
integration (Jafar et al., 2010; Le Gat et al., 2023).
While some of the limitations are inherent to the
model’s application, there are still untapped
possibilities in integrating data to enrich condition
assessment and strategic planning for improved and
proactive asset management. We have observed that
most of the published works have not considered the
possible effects of adjacent utility infrastructure in
urban environments. This therefore raises the
qguestion  of  whether integrating nearby
infrastructure systems influences the probability of
pipe failure. Such a multidimensional approach
could prove beneficial in improving the prediction
accuracy of pipe failure algorithms rather than only
using WSS-specific attributes. These improvements
could then be used in another effective and
widespread strategy for reducing water losses, i.e.
the creation of permanent or temporary District
Metered Areas (DMAS). DMAs enable the targeted
monitoring of pressure and flow in isolated sections
of water distribution networks (WDN) and enable
the control of water losses within these zones. The
probability of pipe failure can play a vital role in
shaping DMA design. These probabilities can be
used as input variables to steer and influence the
size and shape of WDN segmentation, which can
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lead to an optimized structure and cost-effectiveness
of DMAs. As Kozelj et al. (2017) emphasize,
spectral graph partitioning integrated with hydraulic
data can optimize network segmentation into
hydraulically functional DMAs, facilitating quicker
detection of anomalies. Zevnik et al. (2019) further
demonstrate that incorporating failure probability
and topological, hydraulic, and cost criteria into the
design process yields more efficient and objective
DMA configurations. Since water utilities are
responsible for maintaining the public water
infrastructure and thus must ensure a timely, safe,
and sufficient supply of drinking water, there is and
will be a growing need for models that assess the
likelihood of pipeline failure.

This study aims to address this need by utilising
indirect assessment methods, such as predictive
modelling, to identify the primary factors that
influence pipeline deterioration. By integrating
historical failure data, detailed pipe characteristics,
and publicly available cadastral data on other urban
infrastructure, we could observe influences that can
improve the effectiveness of ML applications for
the proactive management of water network risks.
The goal is to develop a model that can evaluate the
condition of pipelines in a specified area and
pinpoint the most critical sections that require
interventions (repair, rehabilitation, or
replacement). These findings will not only support
a more targeted and cost-effective pipeline renewal
strategy but also have the potential to significantly
improve water supply management based on asset
management principles.

2. Methodology
2.1 Ljubljana water supply system

The presented methodology was developed and
evaluated using data from the Ljubljana WSS
(Ljubljana, Slovenia). The Ljubljana WSS supplies
drinking water to more than 355,000 registered
residents in the city and its surroundings. In 2024,
the revenue water amounted to 20,212,381 cubic
meters, while a total of 29,168,618 cubic meters
was abstracted from water sources. To ensure the
provision of drinking water, the system consumed
approximately 11.7 million kilowatt-hours (kwWh)
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of electricity during the year (VOKAS, 2025). The
annual real water losses within the system were
estimated at 22.8%; NRW represented 28.2% of the
total water volume for the year 2024. The yearly
occurrence of pipe failures from 2010 to 2024
amounts to 2,281 records, ranging from a minimum
of 64 to a maximum of 229, with an average total of
164 annual pipe failures.

Our research considered the cadastral base of the
Ljubljana WSS, which comprised 52,605 records of
pipe sections, totaling 1,190 kilometers of the
distribution network. Pipe sections consisted of
different materials such as asbestos cement (AC;
3.1%), reinforced glass fiber plastics (GRP; 0.5%),
steel (JE; 2.2%), cast iron (LZ; 21.2%), ductile iron
(NL; 43.0%), polyethylene (PE; 16.0%), polyvinyl
chloride (PVC; 13.7%), and some unknown (NZ;
0.3%). The pipe diameters of the Ljubljana WSS
consist of pipe sections: d<50 mm (1.1%),
50 < d <80 mm (9.6%), 80 < d <100 mm (19.0%),
100<d<200mm (47.9%), and d>200mm
(22.6%). From this pipe diameter distribution, we
obtain a classification of primary (28%) and
secondary (72%) network types.

2.2 XGBoost modelling

To develop a predictive ML model of pipe failure
probabilities, we focused our research towards the
well-established XGBoost algorithm (Chen &
Guestrin, 2016), which can accurately predict water
loss resulting from pipe failures in a city's water
supply systems (Asadi, 2024; Warad et al., 2024).
To predict pipeline failure risk in a real-world WSS,
two primary datasets were integrated. The first
originated from the national utility cadastre
managed by GURS (2025) and contained detailed
spatial and attribute data for 52,605 individual pipe
segments across the municipal water network. This
dataset included intrinsic pipe characteristics such
as material, diameter, function, and year of
installation, which are often identified as influential
for pipe failures (Karadirek et al., 2024; Bakhtawar
et al., 2025). The second dataset, provided by the
municipal utility operator VOKA Snaga Ljubljana,
comprised a register of 2,281 documented pipe
bursts, including the age of the pipe at the time of
failure. These historical failure events were spatially
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mapped to their corresponding pipe segments,
allowing for the construction of a binary target
variable indicating the presence (True) or absence
(False) of leaks for each segment.

To enhance predictive capability, contextual spatial
features were incorporated by integrating data on

nearby urban infrastructures, including roads,
electricity grids, sewerage systems,
telecommunications  cables, district heating

networks, natural gas pipelines, and rail lines —
sourced from the national cadastre. Proximity
measures were derived by spatially intersecting pipe
segments with buffered zones around these
infrastructure types, thus enriching the dataset with
localized environmental and operational attributes
that potentially influence pipe degradation and
failure risk.

The pipeline failure prediction was framed as a
binary classification task. The model's target
variable indicated whether a given pipe segment had
experienced a documented leak based on historical
records. The XGBoost algorithm (Chen & Guestrin,
2016), a gradient-boosting framework utilising
ensembles of decision trees, was selected due to its
superior performance on structured tabular data and
its native support for categorical variables (Chen et
al., 2023), which eliminated the need for manual
encoding and streamlined preprocessing. Since leak
events represent a small fraction of all pipe
segments, the scale_pos weight parameter in
XGBoost was empirically set to 50 to address class
imbalance. This adjustment increased the influence
of rare leak instances during training, prioritizing
sensitivity to leaks over false positives. Such a
trade-off is acceptable in infrastructure risk
modelling, where missing actual leaks can have
significant consequences.

Hyperparameter optimization was conducted using
Optuna (Akiba et al., 2019), which efficiently
explored parameter spaces to identify optimal
values for learning rate, tree depth, and
regularization terms, thereby enhancing both
predictive accuracy and generalizability.

A stratified five-fold cross-validation procedure
was employed to validate the model, ensuring that
each fold contained a representative proportion of
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leak and non-leak samples. In each of the five
iterations, 80% of the data was used for training and
20% for validation. This approach generated out-of-
fold predictions for all pipe segments, allowing
comprehensive risk estimates without reusing
training data or introducing bias. The balanced
distribution of leak cases across folds mitigated
sampling bias and improved model robustness. The
procedure is schematically depicted in Figure 1.

Foldl Fold2 Fold3 Fold4 Fold5

LT [ [ ] wm

[N N N N B g .
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L ] ] e

L L T ] wes
Training set Validation set

Figure 1: 5-fold stratified cross-validation of
dataset (authors’ visualization).

Slika 1: 5-kratna slojevita navzkrizna validacija
podatkovnega nabora (vizualizacija avtorjev).

Feature importance analysis was conducted using
XGBoost's  built-in  metrics:  gain, relative
frequency, and cover. These metrics quantify each
variable's contribution to the model based on tree
splits. Specifically, gain measures the improvement
in split quality contributed by a feature across all
tree splits, relative frequency (also known as
weight) indicates how often a feature is used in tree
splits, and cover represents the number of samples
affected by those splits. To standardize
comparisons, we expressed frequency as a
proportion —each feature's count divided by the total
number of tree splits. This analysis highlighted the

most influential intrinsic pipe attributes and
contextual spatial features, offering valuable
insights for asset management and pipeline

condition assessment.

This integrative, data-driven approach combining
historical failure data, detailed pipe characteristics,
and urban infrastructure context demonstrates the
effective application of machine learning for the
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proactive management of water network risk. By
using XGBoost, the ML model predicts not only
leak likelihoods but also estimates the relative
contribution of each input feature by leveraging the
model's inherent ability to compute metrics on
feature importance.

2.3 Evaluation metrics

The model was evaluated using standard
classification metrics implemented via the scikit-
learn library (Pedregosa et al., 2011). Accuracy
guantifies the ratio of correct predictions — both
positive and negative — to the total number of
predictions:

TP+TN
TP+TN+FP+FN

Accuracy = (1),
where: TP: True Positives, TN: True Negatives, FP:

False Positives, FN: False Negatives.

Precision measures how many of the instances
predicted as positive were positive, indicating the
model's effectiveness in minimizing false alarms:

TP
TP+FP

Precision = (2).
Recall evaluates the proportion of true positive
cases correctly identified by the model, serving as
an indicator of detection sensitivity:

TP
TP+FN

Recall = 3).

The F1 score balances precision and recall by

calculating their harmonic mean, which is
especially useful when dealing with class
imbalance:
F1 Score=L (4).
2TP+FP+FN

ROC AUC (Receiver Operating Characteristic —
Area Under the Curve) quantifies how well the
model distinguishes between classes across all
classification thresholds by analyzing the trade-off
between true positive and false positive rates. It is a
metric used to evaluate the performance of binary
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classification models, especially for imbalanced
datasets.

Logarithmic loss (Logloss) evaluates how well
predicted probabilities align with actual labels,
heavily penalizing overconfident misclassifications:

N
1
LogLoss = —NZ[}G’ log(p:)

T a-ylegt-p)]  ©)

where: y;: Actual label (0 or 1), p;: Predicted
probability for class 1, N: Number of samples.

3 Results and discussion

For each pipeline segment in the dataset, the
developed XGBoost model generated a continuous
probability score (0 to 1) for that segment, reflecting
the estimated likelihood of a failure event. These
probability levels were directly derived from
validation subsets used during five-fold stratified
cross-validation, which implies that all predictions
were generated on validation data not included in
the training, ensuring the independence of the
model’s assessments. This cross-validation strategy
reduced the risk of overfitting and allowed for a
more reliable evaluation of the model’s predictive
ability across the entire network.

The probability of output results was integrated
within a GIS framework (QGIS.org, 2025), where
the probabilities could be visualized and ranked into
four ordered risk classes, enhancing interpretability
and decision-making at the operational level
(Figure 2). The classification thresholds were: (0.0—
0.2) for segments of low risk; (0.2—0.4) for medium-
low risk segments; (0.4-0.6) for segments of
medium risk; (0.6-0.8) for medium-high risk
segments; and (0.8-1.0) for segments of high risk or
virtual certainty of default. This ordered
classification enabled a clear presentation of
pipeline segments at risk, categorized by their
respective levels of risk. This risk-based
classification allows utility operators to target high-
risk segments for inspection or preventive
maintenance.
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Figure 2: Pipe failure probabilities (leakage) and heatmap the spatial distribution of historical failures

(authors’ analysis; Data source: GURS, 2025; VOKAS, 2025).

Slika 2. Verjetnost okvar cevovodov (puscanje) in toplotna karta prostorske porazdelitve zgodovinskih okvar
(analiza avtorjev; vir podatkov: GURS, 2025; VOKAS, 2025).

Table 1 presents the model's explainability through
three standard feature importance metrics derived
from the ensemble structure: gain, relative
frequency, and cover. Gain quantifies the total
improvement in the model's objective function
attributable to splits involving each feature, serving
as a direct measure of predictive contribution.
Relative frequency captured how often each feature
was used to split nodes across all trees, normalized
by the total of 101,222 splits, enabling standardized
comparison across variables. Cover reflected the
cumulative number of training instances affected by
those splits, offering insight into the feature's impact
across the dataset. Together, these metrics provided
a comprehensive view of how each feature
contributed to the model's learning and decision-
making processes.

As anticipated, pipe-related features — most notably
WS_Material — contributed the most to gain
(~103.8), indicating a strong impact on model
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decision paths (Table 1). Despite a moderate
relative frequency (~5.7%), the significant gain here
indicates that pipe material is a key differentiator
between high-risk and low-risk segments within the
model's structure.

The WS _Year_Install, or year of pipe installation
(i.e. the age of the pipe), exhibited the greatest
relative frequency (~24.8%), demonstrating its
widespread application across tree splits in the
ensemble. Like its lower value compared to pipe
material, its gain (~52.7) also substantiates its
significant predictive contribution. It arises from the
model's dependency on the age of the pipes, as a
high age value is always correlative with processes
of deterioration and the probability of breakdown
associated with ageing infrastructure.

WS_Diameter, as the variable for pipe diameter,
also exhibited a moderate impact, with a relative
frequency of ~13.8% and a gain of ~22.1. The
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diameter would presumably contribute to the risk of
failure through its association with inner pressure
dynamics and mechanical load. These findings align
with results reported by Karadirek et al. (2024), who
also identified material type and pipe age as
dominant predictors of failure in urban water
networks.

Table 1: Feature importance metrics for XGBoost
model (authors’ analysis).

Preglednica 1: Vpliv vhodnih spremenljivk v
modelu XGBoost (analiza avtorjev).

Feature® Gain Relative Cover
Frequency

WS_Material 103.79 5.72% 1281.97
WS_Year_Install 52.7 24.79% 588.25
WS_Diameter 22.12 13.85% 728.26
EE_Voltage 194 6.45% 780.93
WS_Type Network  17.48 2.89% 735.49
TC_Type_Cable 16.09 9.87% 630.84
WW_Type_Sewer 15.8 7.83% 657.12
RO Road _Categ  13.44 9.98% 635.12

DH_Diameter 12.69 5.42% 681.1
NG_Diameter 11.86 13.03% 560.67

The XGBoost model's performance evaluation
revealed good overall performance, particularly in
terms of discrimination capability. With an ROC
AUC of 0.9102, the model demonstrated excellent
classification ability. While precision varied —
showing an overall rate of 0.8750 but dropping to
0.1324 in the minority class —recall remained strong
at 0.7750, confirming the model's effectiveness in
identifying most failure cases. The F1 score of
0.2261 illustrates the inherent trade-off in class-
imbalanced settings. As the objective function, the
LogLoss value of 0.2500 indicates good calibration
of predicted probabilities, ensuring that the model is
suitable assessing pipe condition.

8 WS — Water Supply; EE — Electric Energy; TC —
telecommunications; WW — sewerage; RO — Roads; DH —
District Heating; NG — Natural Gas
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Additionally, to the geospatial representation of the
probabilistic results generated by the XGBoost
algorithm (Figure 2), we can observe the 52,605
pipeline segments in a statistical analysis by
observing the distribution of pipe-specific features,
such as material and diameter, in pipe failure
probability classes. Figure 3 illustrates the pipe
failure probability of pipes depending on the
material of the pipe and the age.

—
0.8
:S :. |
= — 0.6 2
g 50 ' &
o —_— — B
] —— e— =}
= _—-= =
& 2
, = -
2 75 == o — —] 04-4
S — 9
B I —— =
100 — 0.
3 > ‘
Q@Q 7\@(\ v@z 7\§ "\'};._‘3 &£ <L {‘\\Z\\ ;\‘,3, 5-&
FFF SAad & F &
& O C &E S X
& o °
o
W
Material

Figure 3: Heat map of the pipe failure
probabilities (leak) depending on the pipe material
and age (authors’ analysis).

Slika 3: Toplotna karta verjetnosti okvar cevi
(puscanj) glede na material in starost cevi (analiza
avtorjev).

Additionally, Figure 4 provides categorization by
material and pipe length, along with their
corresponding failure probability classes. For
example, older asbestos-cement (AC), cast-iron
(LZ), polyethylene (PE), and polyvinyl chloride
(PVC) pipes have a higher proportion of higher-risk
probabilities. In contrast, newer materials, such as
ductile iron (NL) and steel (JE) pipes, generally
have lower risk classes, reflecting improved
durability and resistance to failure.
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Figure 4: Length of pipes classified by pipe
material and failure probabilities (authors’
analysis).

Slika 4: Dolzina cevi glede na material in

verjetnost okvar cevi (analiza avtorjev).

— mp>08
III 0.6<p=08
04<p<06
02<p=04
N I I e
& & N &
] > > a
a

]

£ 200,000

150,000
100,000

50,000

>

5
&
=

Ranges of Pipe Diameter [mm]

Figure 5: Length of pipes classified by diameter of
pipes and pipe failure probabilities (authors’
analysis).

Slika 5: Dolzina cevi glede na premer in verjetnost
okvar cevi (analiza avtorjev).

Similarly, Figure 5 illustrates the lengths of pipes by
pipe diameter ranges. In these diameter ranges,
specifically the range 100 < d <200, ductile iron
(NL) pipes have a large share, i.e. 68.1%.
Additionally, we can observe that the smaller
diameter ranges, 50 < d <80 and 80 < d < 100, have
a larger proportion of medium to high pipe failure
risk.

Examining the feature importance results (Table 1)
helps us infer the influence of nearby utility
infrastructure. We will focus our observation on the
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gain metric, which measures how much a feature
improves the model’s accuracy when used in a
decision split. EE_Voltage showed a moderate to
high gain, suggesting that the presence or proximity
of high-voltage electrical infrastructure may be
correlated with an increased risk of pipe failure.
This may reflect the complexity of construction or
restricted access, where areas with underground
electricity are more prone to delayed maintenance
or suboptimal installation practices.
RO_Road_Categ also exhibited substantial gain,
indicating that road class — e.g. whether a pipe
segment runs under arterial roads, local streets, or
highways — has significant predictive value. Heavily
trafficked roads can contribute to mechanical stress
and vibration, which accelerates fatigue in pipes —
a finding consistent with urban pipeline
vulnerability studies. WS_Type_Network, although
a WSS-native attribute, yielded less gain than
WS_Material or WS_Year_Install, suggesting that
network classification alone (e.g. distribution vs.
trunk mains) may not be as discriminatory for
failure likelihood. However, it still contributes to
nuanced distinctions in pipe function and expected
pressure regimes.

Feature WW_Type_Sewer demonstrated a relatively
high frequency in XGBoost model splits, even if its
gain was moderate. This suggests the consistent
predictive value of sewer type presence (e.g.
combined vs. separate systems), possibly due to
shared trenching or construction timelines, which
may impact the integrity of both networks.
DH_Diameter and NG_Diameter appeared
frequently in decision paths, reflecting that
collocation with large-diameter district heating or
gas lines may indirectly signal urban density or
excavation difficulty, both of which are risk factors
associated with legacy infrastructure and reduced
intervention frequency. The use of these features
across numerous tree splits suggests they offer
complementary context, enriching the model’s
ability to account for environmental complexity.

Compared to standard WSS features like pipe
material ~ (WS_Material), installation  year
(WS_Year_Install), and diameter (WS_Diameter) —
which exhibited the highest gain and frequency —
the cross-utility contextual variables were
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secondary but meaningful predictors. Traditional
features dominate due to their direct linkage to
physical deterioration mechanisms (e.g. corrosion,
age-related degradation). However, contextual
infrastructure features expand the model’s scope,
enabling it to capture risk factors related to
environmental setting, construction history, and
collocated utility impacts — dimensions not typically
represented in legacy asset management models.

The coverage metric, which measures how much a
feature affects the dataset, tracks the number of
affected training patterns (segments) when that
feature is used in a split. WS_Type_Network and
RO _Road Category showed broad coverage,
indicating that these features contribute to splits that
affect large portions of the pipeline network. These
features are likely generalizable across various
segment types and thus are valuable for system-
wide risk classification. EE_Voltage and
NG_Diameter, on the other hand, had lower cover
but higher gain, suggesting that while they influence
fewer segments, their predictive power is strong in
specialised contexts, such as industrial zones or
critical urban corridors.

The XGBoost algorithm has demonstrated overall
performance in terms of pipe failure prediction and
achieved a high recall rate, which proves its
effectiveness in identifying wvulnerable pipeline
segments. The presented ML pipe failure model
could therefore be applied in further WDN studies
to optimize DMA design and their cost-
effectiveness in terms of identifying water losses in
WSS.

4 Conclusions

In this study, we showed that ML models can be
highly effective in proactively managing large asset
inventories, like in the case of WSS. Additionally,
we incorporated a new perspective of quantified
assessment of non-WSS features (i.e. adjacent
infrastructure  systems) in  pipeline failure
predictions. This multidimensional approach is rare
in existing literature, where most models are
confined to WSS-specific attributes and historical
failure records alone (Kleiner & Rajani, 2001;
Bakhtawar et al., 2025). For data-driven predictive
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models, integrating variables that capture the
influence of nearby utility infrastructure — such as
construction activity, operational stresses from
nearby  transportation infrastructure,  and
environmental impacts from adjacent utility
operations — is shown to significantly enhance
model accuracy in predicting pipeline failures. By
using spatial buffering and overlay analysis to
integrate water infrastructure with broader urban
infrastructure datasets, this study highlights the
multisystem interdependence of buried utility
infrastructure. It aligns with actual urban planning
and utility collocation constraints, offering a
scalable framework for  cross-infrastructure
evaluations that incorporates risk perception from
other utilities. The implications of these findings
can significantly refine prioritization strategies,
foster proactive asset management, and extend the
reliability and service life of critical water
infrastructure.
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