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Abstract 

Water pipeline failures in urban networks are a significant source of non-revenue water, service disruptions, 

and high maintenance costs. This study develops a machine learning model to predict pipeline failure 

probabilities and inform risk-based maintenance strategies. Trained on real-world assets and geospatial data 

from 2010 to 2025, the model incorporates standard pipe attributes – such as material, age, diameter, network 

type, and maintenance history – alongside spatially derived indicators of the surrounding infrastructure. 

Notably, it quantifies the predictive impact of adjacent infrastructure systems, including electricity grids, gas 

pipelines, district heating, sewage systems, and roads, utilizing spatial buffering and overlay techniques. 

Several of these cross-utility features, particularly road category, electricity voltage, and sewer type, showed 

meaningful predictive importance, reflecting their indirect but consistent influence on the risk of pipe failure. 

The ML model, built with the XGBoost algorithm and validated through stratified K-fold cross-validation, 

achieved high performance (ROC AUC: 0.9102, recall: 0.7750, accuracy: 0.8750). Despite lower precision 

due to class imbalance, the F1 score (0.2261) and LogLoss (0.2500) confirm its reliability. This study 

introduces a novel, spatially enriched approach to failure prediction, advancing urban infrastructure 

management through context-aware, data-driven insights. 

Keywords: Water distribution systems, Pipe failure prediction, Machine learning, XGBoost, Spatial analysis, 

condition assessment. 

Izvleček 

Okvare vodovodnih cevi v urbanih omrežjih so pomemben vzrok komercialnih izgub zaradi neobračunane 

vode, motenj v oskrbi in visokih stroškov vzdrževanja. Ta študija razvija model strojnega učenja za napoved 

verjetnosti okvar cevovodov in podporo strategijam vzdrževanja, temelječim na tveganju. Model, izurjen na 
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podatkih o infrastrukturi in geoprostorskih podatkih iz obdobja 2010–2025, vključuje standardne lastnosti cevi 

– kot so material, starost, premer, vrsta omrežja in zgodovina vzdrževanja – ter prostorsko izpeljane kazalnike 

infrastrukture v neposredni soseščini. Posebej pomembno je, da model kvantificira napovedno vrednost 

sosednjih infrastrukturnih sistemov, vključno z električnim omrežjem, plinovodi, daljinskim ogrevanjem, 

kanalizacijo in cestnim omrežjem, z uporabo prostorske analize soseščine in tehnik prekrivanja. Več teh 

medinfrastrukturnih značilnosti, zlasti kategorija ceste, napetost električnega omrežja in tip kanalizacije, je 

pokazalo pomemben napovedni vpliv, kar odraža njihovo posredno, a dosledno povezavo z verjetnostjo okvare 

cevi. Model strojnega učenja, zasnovan z algoritmom XGBoost in validiran s slojevitim navzkrižnim 

preverjanjem (K-fold), je dosegel visoko zmogljivost (ROC AUC: 0,9102; priklic: 0,7750; natančnost: 

0,8750). Kljub nižji preciznosti zaradi neravnovesja razredov rezultat F1 (0,2261) in LogLoss (0,2500) 

potrjujeta njegovo zanesljivost. Raziskava predstavlja nov, s prostorskimi podatki obogaten pristop k 

napovedovanju okvar in prispeva k naprednemu, na podatkih temelječem upravljanju urbane infrastrukture. 

Ključne besede: vodovodni sistemi, napovedovanje okvar cevovodov, strojno učenje, XGBoost, prostorska 

analiza, ocenjevanje stanja. 

 

1. Introduction 

Water supply systems (WSS) are vital components 

of public infrastructure, providing clean drinking 

water to residents, a key factor for human well-

being and societal prosperity. These systems, which 

include wells, reservoirs, pumps, and pipelines, are 

becoming increasingly challenging to manage due 

to, among other things, the need to maintain 

supplies amid changing urban settlements, 

infrastructure investment, and increased regulatory 

pressure (Ganjidoost et al., 2022). In addition to 

water availability and quality, the deterioration of 

WSS pipelines is a growing concern. Environmental 

conditions, material ageing, and operational stress 

contribute to this deterioration, leading to water 

losses, increased maintenance costs, and reduced 

service quality (Misiunas, 2006). The challenges 

faced by water utilities, particularly those related to 

incomplete or outdated infrastructure data, further 

complicate proactive asset management (Phan et al., 

2019; Ganjidoost et al., 2022). 

One of the most important technical indicators to 

follow in WSS performance is non-revenue water 

(hereafter referred to as NRW), and it is one of the 

most significant challenges for water utility 

operators. NRW is the difference between the 

abstracted amount of water and the amount of water 

sold. NRW is composed of three primary 

components: real losses, apparent losses, and 

unbilled consumption. The proportion of NRW 

varies considerably from country to country, 

depending on the state of the water supply networks, 

and ranges from 8% to 57% in Europe (European 

Commission, 2025). In Slovenia, data on NRW 

have been available since 2010, following the 

introduction of the national reporting system, the 

Information System of Public Environmental 

Protection Services (IJSVO) (MOPE, 2025). At the 

national level, NRW is increasing and accounts for 

29.4%, according to the latest data from 2023 

(SURS, 2025). While water losses are often viewed 

through an economic lens – primarily due to the 

costs associated with treatment and pumping – they 

also pose significant challenges for water system 

management and public health. Addressing water 

losses effectively requires a comprehensive strategy 

developed by the system operator and approved by 

the owner to find an appropriate balance between 

repair, rehabilitation, and replacement of 

deteriorated pipelines. 

In recent decades, utilities and researchers have 

developed various models to assess pipeline 

conditions and predict failure using indirect 

indicators. These tools are crucial for prioritizing 

rehabilitation efforts when resources are limited and 

complete pipe replacement is not economically 

feasible (Large et al., 2015; Le Gat et al., 2023). 

However, predicting pipe deterioration is not solely 

reliant on one feature. The presence of older pipes 

that still function adequately complicates the use of 

age as the sole predictor, highlighting the need for 

multifactorial assessment approaches. Condition 

assessment methods and risk-based planning are 
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increasingly integrating GIS-based spatial 

modelling and data analysis. These tools are 

instrumental in understanding deterioration patterns 

through visualizing the spatial distribution of 

deterioration factors and optimizing investment 

strategies by identifying the most critical areas for 

rehabilitation (Mackey et al., 2014; Ganjidoost et 

al., 2022). 

Various models have been developed to assist in 

pipeline renewal decisions, each with distinct data 

needs, methodologies, and optimization goals (Liu 

et al., 2012; Bakhtawar et al., 2025). A key 

challenge is to determine which pipe segments 

should be prioritized for rehabilitation. According 

to Bakhtawar et al. (2025), pipe condition 

assessment approaches typically fall into two 

categories: physical or statistical. Physical models 

rely on structural and environmental inputs, while 

statistical models leverage historical data to predict 

failures. These include deterministic models, which 

are based on fixed input values from laboratory tests 

or standards, and probabilistic models, which 

estimate the probability of failure or remaining 

useful life (Rajani & Kleiner, 2001; Rezaei et al., 

2015; Bakhtawar et al., 2025). Unlike deterministic 

models, probabilistic methods account for 

uncertainty, offering a range of likely outcomes 

rather than a single estimate. Due to the limited and 

costly data requirements, statistical or empirical 

models are often used as an alternative. These rely 

on historical default data to predict future trends 

(Kleiner & Rajani, 2001) and can be deterministic 

or probabilistic. Deterministic approaches group 

pipes by similar characteristics and model failure 

patterns based on age and history, while 

probabilistic models estimate the lifetime or 

probability of failure (Misiunas, 2006). 

Over the last few decades, machine learning (ML) 

approaches have emerged as efficient tools, offering 

improved prediction power and adaptability in 

handling complex, nonlinear interdependencies 

between variables. Recent advancements in ML 

have significantly improved the prediction of 

pipeline failures and leak detection (Latifi et al., 

2024). Standard statistical models, though 

sometimes helpful, suffer from data insufficiency 

and a lack of adaptability as they struggle with 

complex, nonlinear interdependencies between 

variables (Cabral et al., 2023; Mohammadagha 

et al., 2025). 

In comparison, ML algorithms such as gradient 

boosting (e.g. XGBoost) have demonstrated 

significant superiority in terms of failure prediction, 

particularly with imbalanced datasets. In a 

comparative study, Asadi (2024) found that 

XGBoost achieved a recall rate of 0.795 – 

substantially higher than the 0.683 recorded by 

logistic regression – highlighting its effectiveness in 

identifying vulnerable pipeline segments. Warad et 

al. (2024) reported that their ensemble learning 

model, optimized via Bayesian tuning, achieved an 

exceptionally low root mean squared error (RMSE) 

of 0.0023, indicating high prediction accuracy. 

Despite their potential, the development and 

widespread application of ML models are still 

limited, primarily due to data availability, the 

variability of degradation mechanisms, the need for 

user-specific calibration, and a lack of data 

integration (Jafar et al., 2010; Le Gat et al., 2023). 

While some of the limitations are inherent to the 

model’s application, there are still untapped 

possibilities in integrating data to enrich condition 

assessment and strategic planning for improved and 

proactive asset management. We have observed that 

most of the published works have not considered the 

possible effects of adjacent utility infrastructure in 

urban environments. This therefore raises the 

question of whether integrating nearby 

infrastructure systems influences the probability of 

pipe failure. Such a multidimensional approach 

could prove beneficial in improving the prediction 

accuracy of pipe failure algorithms rather than only 

using WSS-specific attributes. These improvements 

could then be used in another effective and 

widespread strategy for reducing water losses, i.e. 

the creation of permanent or temporary District 

Metered Areas (DMAs). DMAs enable the targeted 

monitoring of pressure and flow in isolated sections 

of water distribution networks (WDN) and enable 

the control of water losses within these zones. The 

probability of pipe failure can play a vital role in 

shaping DMA design. These probabilities can be 

used as input variables to steer and influence the 

size and shape of WDN segmentation, which can 
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lead to an optimized structure and cost-effectiveness 

of DMAs. As Kozelj et al. (2017) emphasize, 

spectral graph partitioning integrated with hydraulic 

data can optimize network segmentation into 

hydraulically functional DMAs, facilitating quicker 

detection of anomalies. Zevnik et al. (2019) further 

demonstrate that incorporating failure probability 

and topological, hydraulic, and cost criteria into the 

design process yields more efficient and objective 

DMA configurations. Since water utilities are 

responsible for maintaining the public water 

infrastructure and thus must ensure a timely, safe, 

and sufficient supply of drinking water, there is and 

will be a growing need for models that assess the 

likelihood of pipeline failure. 

This study aims to address this need by utilising 

indirect assessment methods, such as predictive 

modelling, to identify the primary factors that 

influence pipeline deterioration. By integrating 

historical failure data, detailed pipe characteristics, 

and publicly available cadastral data on other urban 

infrastructure, we could observe influences that can 

improve the effectiveness of ML applications for 

the proactive management of water network risks. 

The goal is to develop a model that can evaluate the 

condition of pipelines in a specified area and 

pinpoint the most critical sections that require 

interventions (repair, rehabilitation, or 

replacement). These findings will not only support 

a more targeted and cost-effective pipeline renewal 

strategy but also have the potential to significantly 

improve water supply management based on asset 

management principles. 

 

2. Methodology 

2.1 Ljubljana water supply system 

The presented methodology was developed and 

evaluated using data from the Ljubljana WSS 

(Ljubljana, Slovenia). The Ljubljana WSS supplies 

drinking water to more than 355,000 registered 

residents in the city and its surroundings. In 2024, 

the revenue water amounted to 20,212,381 cubic 

meters, while a total of 29,168,618 cubic meters 

was abstracted from water sources. To ensure the 

provision of drinking water, the system consumed 

approximately 11.7 million kilowatt-hours (kWh) 

of electricity during the year (VOKAS, 2025). The 

annual real water losses within the system were 

estimated at 22.8%; NRW represented 28.2% of the 

total water volume for the year 2024. The yearly 

occurrence of pipe failures from 2010 to 2024 

amounts to 2,281 records, ranging from a minimum 

of 64 to a maximum of 229, with an average total of 

164 annual pipe failures. 

Our research considered the cadastral base of the 

Ljubljana WSS, which comprised 52,605 records of 

pipe sections, totaling 1,190 kilometers of the 

distribution network. Pipe sections consisted of 

different materials such as asbestos cement (AC; 

3.1%), reinforced glass fiber plastics (GRP; 0.5%), 

steel (JE; 2.2%), cast iron (LZ; 21.2%), ductile iron 

(NL; 43.0%), polyethylene (PE; 16.0%), polyvinyl 

chloride (PVC; 13.7%), and some unknown (NZ; 

0.3%). The pipe diameters of the Ljubljana WSS 

consist of pipe sections: d ≤ 50 mm (1.1%), 

50 < d ≤ 80 mm (9.6%), 80 < d ≤ 100 mm (19.0%), 

100 < d ≤ 200 mm (47.9%), and d > 200 mm 

(22.6%). From this pipe diameter distribution, we 

obtain a classification of primary (28%) and 

secondary (72%) network types. 

 

2.2 XGBoost modelling 

To develop a predictive ML model of pipe failure 

probabilities, we focused our research towards the 

well-established XGBoost algorithm (Chen & 

Guestrin, 2016), which can accurately predict water 

loss resulting from pipe failures in a city's water 

supply systems (Asadi, 2024; Warad et al., 2024). 

To predict pipeline failure risk in a real-world WSS, 

two primary datasets were integrated. The first 

originated from the national utility cadastre 

managed by GURS (2025) and contained detailed 

spatial and attribute data for 52,605 individual pipe 

segments across the municipal water network. This 

dataset included intrinsic pipe characteristics such 

as material, diameter, function, and year of 

installation, which are often identified as influential 

for pipe failures (Karadirek et al., 2024; Bakhtawar 

et al., 2025). The second dataset, provided by the 

municipal utility operator VOKA Snaga Ljubljana, 

comprised a register of 2,281 documented pipe 

bursts, including the age of the pipe at the time of 

failure. These historical failure events were spatially 
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mapped to their corresponding pipe segments, 

allowing for the construction of a binary target 

variable indicating the presence (True) or absence 

(False) of leaks for each segment. 

To enhance predictive capability, contextual spatial 

features were incorporated by integrating data on 

nearby urban infrastructures, including roads, 

electricity grids, sewerage systems, 

telecommunications cables, district heating 

networks, natural gas pipelines, and rail lines – 

sourced from the national cadastre. Proximity 

measures were derived by spatially intersecting pipe 

segments with buffered zones around these 

infrastructure types, thus enriching the dataset with 

localized environmental and operational attributes 

that potentially influence pipe degradation and 

failure risk. 

The pipeline failure prediction was framed as a 

binary classification task. The model's target 

variable indicated whether a given pipe segment had 

experienced a documented leak based on historical 

records. The XGBoost algorithm (Chen & Guestrin, 

2016), a gradient-boosting framework utilising 

ensembles of decision trees, was selected due to its 

superior performance on structured tabular data and 

its native support for categorical variables (Chen et 

al., 2023), which eliminated the need for manual 

encoding and streamlined preprocessing. Since leak 

events represent a small fraction of all pipe 

segments, the scale_pos_weight parameter in 

XGBoost was empirically set to 50 to address class 

imbalance. This adjustment increased the influence 

of rare leak instances during training, prioritizing 

sensitivity to leaks over false positives. Such a 

trade-off is acceptable in infrastructure risk 

modelling, where missing actual leaks can have 

significant consequences. 

Hyperparameter optimization was conducted using 

Optuna (Akiba et al., 2019), which efficiently 

explored parameter spaces to identify optimal 

values for learning rate, tree depth, and 

regularization terms, thereby enhancing both 

predictive accuracy and generalizability. 

A stratified five-fold cross-validation procedure 

was employed to validate the model, ensuring that 

each fold contained a representative proportion of 

leak and non-leak samples. In each of the five 

iterations, 80% of the data was used for training and 

20% for validation. This approach generated out-of-

fold predictions for all pipe segments, allowing 

comprehensive risk estimates without reusing 

training data or introducing bias. The balanced 

distribution of leak cases across folds mitigated 

sampling bias and improved model robustness. The 

procedure is schematically depicted in Figure 1. 

 

Figure 1: 5-fold stratified cross-validation of 

dataset (authors’ visualization). 

Slika 1: 5-kratna slojevita navzkrižna validacija 

podatkovnega nabora (vizualizacija avtorjev). 

Feature importance analysis was conducted using 

XGBoost's built-in metrics: gain, relative 

frequency, and cover. These metrics quantify each 

variable's contribution to the model based on tree 

splits. Specifically, gain measures the improvement 

in split quality contributed by a feature across all 

tree splits, relative frequency (also known as 

weight) indicates how often a feature is used in tree 

splits, and cover represents the number of samples 

affected by those splits. To standardize 

comparisons, we expressed frequency as a 

proportion – each feature's count divided by the total 

number of tree splits. This analysis highlighted the 

most influential intrinsic pipe attributes and 

contextual spatial features, offering valuable 

insights for asset management and pipeline 

condition assessment. 

This integrative, data-driven approach combining 

historical failure data, detailed pipe characteristics, 

and urban infrastructure context demonstrates the 

effective application of machine learning for the 
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proactive management of water network risk. By 

using XGBoost, the ML model predicts not only 

leak likelihoods but also estimates the relative 

contribution of each input feature by leveraging the 

model's inherent ability to compute metrics on 

feature importance. 

 

2.3 Evaluation metrics 

The model was evaluated using standard 

classification metrics implemented via the scikit-

learn library (Pedregosa et al., 2011). Accuracy 

quantifies the ratio of correct predictions – both 

positive and negative – to the total number of 

predictions: 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1), 

 

where: 𝑇𝑃: True Positives, 𝑇𝑁: True Negatives, 𝐹𝑃: 

False Positives, 𝐹𝑁: False Negatives. 

Precision measures how many of the instances 

predicted as positive were positive, indicating the 

model's effectiveness in minimizing false alarms: 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (2). 

 

Recall evaluates the proportion of true positive 

cases correctly identified by the model, serving as 

an indicator of detection sensitivity: 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3). 

 

The F1 score balances precision and recall by 

calculating their harmonic mean, which is 

especially useful when dealing with class 

imbalance: 

F1 Score =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
   (4). 

 

ROC AUC (Receiver Operating Characteristic – 

Area Under the Curve) quantifies how well the 

model distinguishes between classes across all 

classification thresholds by analyzing the trade-off 

between true positive and false positive rates. It is a 

metric used to evaluate the performance of binary 

classification models, especially for imbalanced 

datasets. 

Logarithmic loss (Logloss) evaluates how well 

predicted probabilities align with actual labels, 

heavily penalizing overconfident misclassifications: 

LogLoss = −
1

𝑁
∑[𝑦𝑖 log(𝑝𝑖)

𝑁

𝑖=1

+ (1 − 𝑦𝑖) log(1 − 𝑝𝑖)]           (5) 
 

where: 𝑦𝑖: Actual label (0 or 1), 𝑝𝑖: Predicted 

probability for class 1, 𝑁: Number of samples. 

 

3 Results and discussion 

For each pipeline segment in the dataset, the 

developed XGBoost model generated a continuous 

probability score (0 to 1) for that segment, reflecting 

the estimated likelihood of a failure event. These 

probability levels were directly derived from 

validation subsets used during five-fold stratified 

cross-validation, which implies that all predictions 

were generated on validation data not included in 

the training, ensuring the independence of the 

model’s assessments. This cross-validation strategy 

reduced the risk of overfitting and allowed for a 

more reliable evaluation of the model’s predictive 

ability across the entire network. 

The probability of output results was integrated 

within a GIS framework (QGIS.org, 2025), where 

the probabilities could be visualized and ranked into 

four ordered risk classes, enhancing interpretability 

and decision-making at the operational level 

(Figure 2). The classification thresholds were: (0.0–

0.2) for segments of low risk; (0.2–0.4) for medium-

low risk segments; (0.4–0.6) for segments of 

medium risk; (0.6–0.8) for medium-high risk 

segments; and (0.8–1.0) for segments of high risk or 

virtual certainty of default. This ordered 

classification enabled a clear presentation of 

pipeline segments at risk, categorized by their 

respective levels of risk. This risk-based 

classification allows utility operators to target high-

risk segments for inspection or preventive 

maintenance.
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Figure 2: Pipe failure probabilities (leakage) and heatmap the spatial distribution of historical failures 

(authors’ analysis; Data source: GURS, 2025; VOKAS, 2025). 

Slika 2: Verjetnost okvar cevovodov (puščanje) in toplotna karta prostorske porazdelitve zgodovinskih okvar 

(analiza avtorjev; vir podatkov: GURS, 2025; VOKAS, 2025).

Table 1 presents the model's explainability through 

three standard feature importance metrics derived 

from the ensemble structure: gain, relative 

frequency, and cover. Gain quantifies the total 

improvement in the model's objective function 

attributable to splits involving each feature, serving 

as a direct measure of predictive contribution. 

Relative frequency captured how often each feature 

was used to split nodes across all trees, normalized 

by the total of 101,222 splits, enabling standardized 

comparison across variables. Cover reflected the 

cumulative number of training instances affected by 

those splits, offering insight into the feature's impact 

across the dataset. Together, these metrics provided 

a comprehensive view of how each feature 

contributed to the model's learning and decision-

making processes. 

As anticipated, pipe-related features – most notably 

WS_Material – contributed the most to gain 

(~103.8), indicating a strong impact on model 

decision paths (Table 1). Despite a moderate 

relative frequency (~5.7%), the significant gain here 

indicates that pipe material is a key differentiator 

between high-risk and low-risk segments within the 

model's structure. 

The WS_Year_Install, or year of pipe installation 

(i.e. the age of the pipe), exhibited the greatest 

relative frequency (~24.8%), demonstrating its 

widespread application across tree splits in the 

ensemble. Like its lower value compared to pipe 

material, its gain (~52.7) also substantiates its 

significant predictive contribution. It arises from the 

model's dependency on the age of the pipes, as a 

high age value is always correlative with processes 

of deterioration and the probability of breakdown 

associated with ageing infrastructure. 

WS_Diameter, as the variable for pipe diameter, 

also exhibited a moderate impact, with a relative 

frequency of ~13.8% and a gain of ~22.1. The 
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diameter would presumably contribute to the risk of 

failure through its association with inner pressure 

dynamics and mechanical load. These findings align 

with results reported by Karadirek et al. (2024), who 

also identified material type and pipe age as 

dominant predictors of failure in urban water 

networks. 

Table 1: Feature importance metrics for XGBoost 

model (authors’ analysis). 

Preglednica 1: Vpliv vhodnih spremenljivk v 

modelu XGBoost (analiza avtorjev). 

Feature3 Gain Relative 

Frequency 

Cover 

WS_Material 103.79 5.72% 1281.97 

WS_Year_Install 52.7 24.79% 588.25 

WS_Diameter 22.12 13.85% 728.26 

EE_Voltage 19.4 6.45% 780.93 

WS_Type_Network 17.48 2.89% 735.49 

TC_Type_Cable 16.09 9.87% 630.84 

WW_Type_Sewer 15.8 7.83% 657.12 

RO_Road_Categ 13.44 9.98% 635.12 

DH_Diameter 12.69 5.42% 681.1 

NG_Diameter 11.86 13.03% 560.67 

 

The XGBoost model's performance evaluation 

revealed good overall performance, particularly in 

terms of discrimination capability. With an ROC 

AUC of 0.9102, the model demonstrated excellent 

classification ability. While precision varied – 

showing an overall rate of 0.8750 but dropping to 

0.1324 in the minority class – recall remained strong 

at 0.7750, confirming the model's effectiveness in 

identifying most failure cases. The F1 score of 

0.2261 illustrates the inherent trade-off in class-

imbalanced settings. As the objective function, the 

LogLoss value of 0.2500 indicates good calibration 

of predicted probabilities, ensuring that the model is 

suitable assessing pipe condition. 

 
3 WS – Water Supply; EE – Electric Energy; TC – 

telecommunications; WW – sewerage; RO – Roads; DH – 

District Heating; NG – Natural Gas 

Additionally, to the geospatial representation of the 

probabilistic results generated by the XGBoost 

algorithm (Figure 2), we can observe the 52,605 

pipeline segments in a statistical analysis by 

observing the distribution of pipe-specific features, 

such as material and diameter, in pipe failure 

probability classes. Figure 3 illustrates the pipe 

failure probability of pipes depending on the 

material of the pipe and the age. 
 

 

Figure 3: Heat map of the pipe failure 

probabilities (leak) depending on the pipe material 

and age (authors’ analysis). 

Slika 3: Toplotna karta verjetnosti okvar cevi 

(puščanj) glede na material in starost cevi (analiza 

avtorjev). 

Additionally, Figure 4 provides categorization by 

material and pipe length, along with their 

corresponding failure probability classes. For 

example, older asbestos-cement (AC), cast-iron 

(LZ), polyethylene (PE), and polyvinyl chloride 

(PVC) pipes have a higher proportion of higher-risk 

probabilities. In contrast, newer materials, such as 

ductile iron (NL) and steel (JE) pipes, generally 

have lower risk classes, reflecting improved 

durability and resistance to failure. 
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Figure 4: Length of pipes classified by pipe 

material and failure probabilities (authors’ 

analysis). 

Slika 4: Dolžina cevi glede na material in 

verjetnost okvar cevi (analiza avtorjev). 

 

 

Figure 5: Length of pipes classified by diameter of 

pipes and pipe failure probabilities (authors’ 

analysis). 

Slika 5: Dolžina cevi glede na premer in verjetnost 

okvar cevi (analiza avtorjev). 

Similarly, Figure 5 illustrates the lengths of pipes by 

pipe diameter ranges. In these diameter ranges, 

specifically the range 100 < d ≤ 200, ductile iron 

(NL) pipes have a large share, i.e. 68.1%. 

Additionally, we can observe that the smaller 

diameter ranges, 50 < d ≤ 80 and 80 < d ≤ 100, have 

a larger proportion of medium to high pipe failure 

risk. 

Examining the feature importance results (Table 1) 

helps us infer the influence of nearby utility 

infrastructure. We will focus our observation on the 

gain metric, which measures how much a feature 

improves the model’s accuracy when used in a 

decision split. EE_Voltage showed a moderate to 

high gain, suggesting that the presence or proximity 

of high-voltage electrical infrastructure may be 

correlated with an increased risk of pipe failure. 

This may reflect the complexity of construction or 

restricted access, where areas with underground 

electricity are more prone to delayed maintenance 

or suboptimal installation practices. 

RO_Road_Categ also exhibited substantial gain, 

indicating that road class – e.g. whether a pipe 

segment runs under arterial roads, local streets, or 

highways – has significant predictive value. Heavily 

trafficked roads can contribute to mechanical stress 

and vibration, which accelerates fatigue in pipes  – 

a finding consistent with urban pipeline 

vulnerability studies. WS_Type_Network, although 

a WSS-native attribute, yielded less gain than 

WS_Material or WS_Year_Install, suggesting that 

network classification alone (e.g. distribution vs. 

trunk mains) may not be as discriminatory for 

failure likelihood. However, it still contributes to 

nuanced distinctions in pipe function and expected 

pressure regimes. 

Feature WW_Type_Sewer demonstrated a relatively 

high frequency in XGBoost model splits, even if its 

gain was moderate. This suggests the consistent 

predictive value of sewer type presence (e.g. 

combined vs. separate systems), possibly due to 

shared trenching or construction timelines, which 

may impact the integrity of both networks. 

DH_Diameter and NG_Diameter appeared 

frequently in decision paths, reflecting that 

collocation with large-diameter district heating or 

gas lines may indirectly signal urban density or 

excavation difficulty, both of which are risk factors 

associated with legacy infrastructure and reduced 

intervention frequency. The use of these features 

across numerous tree splits suggests they offer 

complementary context, enriching the model’s 

ability to account for environmental complexity. 

Compared to standard WSS features like pipe 

material (WS_Material), installation year 

(WS_Year_Install), and diameter (WS_Diameter) – 

which exhibited the highest gain and frequency – 

the cross-utility contextual variables were 
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secondary but meaningful predictors. Traditional 

features dominate due to their direct linkage to 

physical deterioration mechanisms (e.g. corrosion, 

age-related degradation). However, contextual 

infrastructure features expand the model’s scope, 

enabling it to capture risk factors related to 

environmental setting, construction history, and 

collocated utility impacts – dimensions not typically 

represented in legacy asset management models. 

The coverage metric, which measures how much a 

feature affects the dataset, tracks the number of 

affected training patterns (segments) when that 

feature is used in a split. WS_Type_Network and 

RO_Road_Category showed broad coverage, 

indicating that these features contribute to splits that 

affect large portions of the pipeline network. These 

features are likely generalizable across various 

segment types and thus are valuable for system-

wide risk classification. EE_Voltage and 

NG_Diameter, on the other hand, had lower cover 

but higher gain, suggesting that while they influence 

fewer segments, their predictive power is strong in 

specialised contexts, such as industrial zones or 

critical urban corridors. 

The XGBoost algorithm has demonstrated overall 

performance in terms of pipe failure prediction and 

achieved a high recall rate, which proves its 

effectiveness in identifying vulnerable pipeline 

segments. The presented ML pipe failure model 

could therefore be applied in further WDN studies 

to optimize DMA design and their cost-

effectiveness in terms of identifying water losses in 

WSS. 

 

4 Conclusions 

In this study, we showed that ML models can be 

highly effective in proactively managing large asset 

inventories, like in the case of WSS. Additionally, 

we incorporated a new perspective of quantified 

assessment of non-WSS features (i.e. adjacent 

infrastructure systems) in pipeline failure 

predictions. This multidimensional approach is rare 

in existing literature, where most models are 

confined to WSS-specific attributes and historical 

failure records alone (Kleiner & Rajani, 2001; 

Bakhtawar et al., 2025). For data-driven predictive 

models, integrating variables that capture the 

influence of nearby utility infrastructure – such as 

construction activity, operational stresses from 

nearby transportation infrastructure, and 

environmental impacts from adjacent utility 

operations – is shown to significantly enhance 

model accuracy in predicting pipeline failures. By 

using spatial buffering and overlay analysis to 

integrate water infrastructure with broader urban 

infrastructure datasets, this study highlights the 

multisystem interdependence of buried utility 

infrastructure. It aligns with actual urban planning 

and utility collocation constraints, offering a 

scalable framework for cross-infrastructure 

evaluations that incorporates risk perception from 

other utilities. The implications of these findings 

can significantly refine prioritization strategies, 

foster proactive asset management, and extend the 

reliability and service life of critical water 

infrastructure. 
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