Optimization of HPPs chain operation on the Lower Sava during flood events
- Authors: Gašper Rak, Matija Brenčič
- Citation: Acta hydrotechnica, vol. 32, no. 57, pp. 91-106, 2019. https://doi.org/10.15292/acta.hydro.2019.07
- Abstract: A complex combination of influencing factors and extensive planned interventions must be considered when planning hydropower production. In addition to electricity production, the main goal is conservation of the run-off regime and conservation or mitigation of flood risk in an affected area. Besides the design of interventions and structures important for HPP operating and other accompanying measures into a considered area, the appropriate operation of an individual HPP and HPPs chain as a whole contributes significantly to achieving the desired goals during high waters. This paper presents an optimization of the HPP chain operation on the section of Sava River between Radeče and state border with the Republic of Croatia. The approximately 60-km long, substantially urbanized section of the Lower Sava, where construction of a chain of six run-of-the-river HPPs is in its finals stages, had to meet a number of requirements to improve or at least conserve the same level of flood risk and run-off regime on the border with the Republic of Croatia, defined by interstate agreement. In order to meet the requirements, we determined a uniform operating procedure of HPP chains during flood events that ensures the conservation of flood-wave characteristics along the chain of HPPs, while meeting the requirements of other stakeholders in this influential area. We showed with hydraulic analysis that the shape of the flood wave and its peak discharge can be conserved, but it is not possible to conserve natural flood-wave propagation time along the chain of HPPs.
- Keywords: HPP chain, operation, run-off regime, flood risk assessment, hydraulic analysis
- Full text: a32gr.pdf
- References:
- DHI (2012). MIKE 21 flow model – Hydrodynamic Module. Scientific Documentation. Hørsholm, Danish hydraulic institute.
- IBE (2012). Obratovanje verige hidroelektrarn na Spodnji Savi pri visokih vodah Save. Ljubljana.
- Brenčič, M., Kvaternik, K., Steinman, F., Rak, G. (2018a). Obratovanje verige hidroelektrarn na Spodnji Savi pri visokih vodah v primeru izjemnih obratovalnih dogodkov. Ljubljana.
- Brenčič, M., Širca, A., Steinman, F., Rak, G. (2018b). Primerjava hidrogramov odtoka Save na državni meji za stanje naravnega vodotoka in po izgradnji verige HE na Spodnji Savi. Ljubljana.
- ICOLD Bulletin (2002). Risk Assessment. In Dam Safety Management. Pariz, Francija.
- IzVRS, januar 2011, Verjetnostna analiza spremenjenih vrednosti visokih vod Save za v.p. Radeče, Dopolnitev 2. Ljubljana.
- Jansen, J., Lariyah, M.S., Nor Bin Mohamed Desa, M., Julien, P.Y. (2013). Hydropower reservoir for flood control: a case study on ringlet reservoir, Cameron highlands, Malaysia. Journal of flood engineering 4(1): 87–102.
- Jongman, B., Kreibich, H., Apel, H., Barredo, J.I., Bates, P.D., Feyen, L., Gericke, A., Neal, J., Aerts, J. C. J. H., Ward, P.J. (2012). Comparative flood damage model assessment: towards a European approach. Natural Hazards and Earth System Sciences 12, 3733–3752. https://doi.org/10.5194/nhess-12-3733-2012.
- Kobus, H. (1980). Hydraulic Modelling, Verlag Paul Parey, Hamburg, 323 p.
- Mlačnik, J., Banovec, P., Bombač, M. (2007). Hidravlična modelna raziskava segmentnih zapornic HE Boštanj: poročilo. Ljubljana.
- Mlačnik, J., Mišigoj, S. (2011). Izvedba hibridnih hidravličnih modelov za območje spodnje vode HE Krško, območje HE Brežice in območje HE Mokrice: hidravlična modelna raziskava visokovodnih razbremenilnikov HE Brežice, HE Mokrice: poročilo. Ljubljana.
- Mlačnik, J., Rodič, P., Novak, G., Vošnjak, S., Steinman, F., Rak, G., Šantl, S., Müller, M., Ciuha, D. (2012). Izvedba hibridnih hidravličnih modelov za območje spodnje vode HE Krško, območje HE Brežice in območje HE Mokrice: poročilo. Ljubljana.
- Parvez, I., Shen, J.J., Khan, M., Cheng, C. (2019). Modeling and Solution Techniques Used for Hydro Generation Scheduling. Water 11. https://doi.org/10.3390/w11071392.
- Patro, S., Chatterjee, C., Mohanty, S., Singh, R., Raghuwanshi, N.S. (2009). Flood Inundation Modeling using MIKE FLOOD and Remote Sensing Data. Journal of the Indian Society of Remote Sensing 37, 107–118.
- Pircher, W. (1990). The contribution of hydropower reservoirs to flood control in the Austrian Alps, Lusanne: Ilydrology in Mountainous Regions: 1 – 8.
- Popa, R., Popa, F., Popa, B., Zachia-Zlatea, D. (2010). Optimization of the weekly operation of a multipurpose hydroelectric development, including a pumped storage plant Earth and Environmental Science 12. https://doi.org/10.1088/1755-1315/12/1/012118.
- Rak, G., Müller, M., Šantl, S., Steinman, F. (2012). Uporaba hibridnih hidravličnih modelov pri načrtovanju hidroelektrarn na Spodnji Savi. Acta hydrotechnica 25, 42, 59–70.
- Rak, G., Kozelj, D., S., Steinman, F. (2016). The impact of floodplain land use on flood wave propagation. Natural hazards 83, 1, 425–443. https://doi.org/10.1007/s11069-016-2322-0.
- Ren, M., He, X., Kan, G., Wang, F., Zhang, H., Li, H., Cao, D., Wang, H., Sun, D., Jiang, X., Wang, G., Zhang, Z. (2017). A Comparison of Flood Control Standards for Reservoir Engineering for Different Countries. Water 9, 1–13. https://doi.org/10.3390/w9030152.
- Samantaray, D., Chatterjee, C., Singh R., Kumar Gupta, P., Panigrahy, S. (2014). Flood risk modeling for optimal rice planning for delta region of Mahanadi river basin in India. Natural Hazards 76: 347–372. https://doi.org/10.1007/s11069-014-1493-9.
- Sakr, A.F., Dorrah H.T. (1985). Optimal Control Algorithm for Hydropower Plants Chain Short-term Operation. IFAC Proceedings 18 (11): 165–171.
- Sekretarev, Y., Sultonov S., Nazarov, M. (2016). Optimization of Long-Term Modes of Hydropower Plants of the Energy System of Tajikistan. 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM): 1–5.
- Strojan, I., Kobold, M., Polajnar, J., Šupek, M., Pogačnik, N., Jeromel, M., Petan, S., Lalić, B., Trček, R. (2010). Poplave v dneh od 17. do 21. septembra 2010. Mišičev vodarski dan: zbornik referatov: 1 – 11.
- Vanderkimpen, P., Melger, E., Peeters, P. (2009). Flood modeling for risk evaluation – a MIKE FLOOD vs. SOBEK 1D2D benchmark study. Flood Risk Management: Research and Practice, 77–84.
- Ward, P.R.B., Räsänen, T.A., Meynell, P.J., Ketelsen, T. (2013). Flood control challenges for large hydroelectric reservoirs: Nam Theun-Nam Kading Basin, Lao PDR. Project report: Challenge Program on Water & Food Mekong project MK3 “Optimizing the management of a cascade of reservoirs at the catchment level”. ICEM – International Centre for Environmental Management, Hanoi Vietnam.
- Zhou, X., Yang, B., Wang, Z., Shan, J. (2011). Comparative study on domestic and foreign flood control standards of reservoir project. Water Power, 37, 72–74.
- Zhou, C., Sun, N., Chen, L., Ding, Y., Zhou, J., Zha, G., Luo, G., Dai, L., Yang, X. (2018). Optimal Operation of Cascade Reservoirs for Flood Control of Multiple Areas Downstream: A Case Study in the Upper Yangtze River Basin. Water 10, 1–24. https://doi.org/10.3390/w10091250.
- Weisgerber, A., Gutierrez-Andres, J., Wilson, G., Marias, F., Karanxha, A., Clarke, R., Millington, R. 2010. Physical-computational modelling comparison in Ireland. International Symposium on hydraulic Physical Modelling and Field Investigation. Nanjing, Kitajska, 192–198.