Influence of calculation criteria on the values of low-flow recession constants in a non-homogenous catchment in Slovenia
- Authors: Klaudija Sapač, Simon Rusjan, Mojca Šraj
- Citation: Acta hydrotechnica, vol. 32, no. 56, pp. 1-19, 2019. https://doi.org/10.15292/acta.hydro.2019.01
- Abstract: In this paper we analyse the influence of three different calculation criteria on the values of low-flow recession constants, namely the influence of the calculation method, recession curve segment length (4, 5, 6, or 7 days) and of the selected period (whole period, monthly, seasonally) for the calculation of the initial discharge, which determines the threshold on the falling limb of the hydrograph for the recession analysis. The analysis is based on daily discharge data of 11 gauging stations in the hydrogeologically non-homogenous Ljubljanica River catchment. For each of the stations, we calculated 24 values of recession constants using a different combination of criteria. Based on these values we determined the influence of each criterion on the final result using statistical tests and graphical approaches. Analysis showed that the recession constants calculated using various methods are statistically significantly different for all gauging stations. The recession constants obtained using the individual recession segment method (IRS) are on average 3.1 days higher than those calculated using the master recession curve method (MRC). The influence of the other two criteria, namely the length of the segment and the period for calculating the initial discharge, is not so obvious, since it is most likely conditioned by catchments’ characteristics influencing the time dynamics of the runoff.
- Keywords: recession analysis, recession constant, low-flows, Ljubljanica River catchment, lfstat.
- Full text: a32ks.pdf
- References:
- ARSO (2018). Arhiv hidroloških podatkov, arhiv površinskih voda. http://vode.arso.gov.si/hidarhiv/pov_arhiv_tab.php (Pridobljeno 5. 6. 2018).
- Bat, M., Dolinar, M., Frantar, P., Hrvatin, M., Kobold, M., Kurnik, B., Nadbath, M., Ožura, V., Uhan, J., Ulaga, F. (2008). Vodna bilanca Slovenije 1971‒2000. Ministrstvo za okolje in prostor, Agencija Republike Slovenije za okolje, Ljubljana, 119 str.
- Berhail, S., Ouerdachi, L., Boutaghne, H. (2012). The Use of the Recession Index as Indicator for Components of Flow. Energy Procedia 18: 741−750. https://doi.org/10.1016/j.egypro.2012.05.090.
- Chen X., Zhang Y-F., Xue, X., Zhang, Z., Wei, L. (2012). Estimation of baseflow recession constants and effective hydraulic parameters in the karst basins of southwest China. Hydrology Research 43 (1-2): 102–112. https://doi.org/10.2166/nh.2011.136.
- de Winter, J. C. F. (2013). Using the Student’s t-test with extremely small sample sizes. Practical Assessment, Research and Evaluation 18 (10): 12 str.
- Demuth, S., Schreiber, P. (1994). Studying storage behaviour using an operational recession method. In: Seuna, P., Gustard, A., Arnell, N. W., Cole, G. A., Eds., FRIEND: Flow Regimes from International Experimental Network Data. Proceedings of Second FRIEND Conference, Braunschweig, Germany, October 1993. IAHS Publ. No. 221: 51−59.
- Doctor, D. H., Alexander, E. C., Kuniansky, E. L. (2005). Interpretation of water chemistry and stable isotope data from a karst aquifer according to flow regimes identified through hydrograph recession analysis. U.S. Geological Survey Karst Interest Group Proceedings, September 12–15, 2005, Rapid City, South Dakota: U.S. Geological Survey Scientific Investigations Report 2005-5160: 82–92.
- Ebrahim, G. Y., Villholth, K. G. (2016). Estimating shallow groundwater availability in small catchments using streamflow recession and instream flow requirements of rivers in South Africa. Journal of Hydrology 541, part B: 754‒765. https://doi.org/10.1016/j.jhydrol.2016.07.032.
- Ferk, M. (2016). Paleopoplave v porečju kraške Ljubljanice. Ljubljana, Založba ZRC, 187 str.
- Gabrovšek, F., Kogovšek, J., Kovačič, G., Petrič, M., Ravbar, N. (2010). Recent results of tracer tests in the catchment of the Unica River (SW Slovenia), Acta Carsologica 39(1), 27–37. https://doi.org/10.3986/ac.v39i1.110.
- Gregor, M., Malík, P. (2012). Construction of master recession curve using genetic algorithms Journal of Hydrology and Hydromechanics, 60, 3–15. DOI: https://doi.org/10.2478/v10098-012-0001-8.
- Koffler, D., Gauster, T., Laaha, G. (2016). Package “lfstat”, 63 str.
- Kogovšek, J. (2001). Monitoring the Malenščica water pulse by several parameters in November 1997. Acta Carsologica 30(1): 39–53.
- Kogovšek, J. (2004). Physico-chemical properties of waters in the Malenščica recharge area (Slovenia). Acta Carsologica 33 (1), 143–158.
- Kolbezen, M., Pristov, J. (1998). Površinski vodotoki in vodna bilanca Slovenije. Ljubljana, Ministrstvo za okolje in prostor, Hidrometeorološki zavod RS: 98 str. http://www.arso.gov.si/vode/poro%C4%8Dila%20in%20publikacije/vodotoki_bilanca.html (Pridobljeno 23. 11. 2018).
- Kovačič, G., Ravbar, N. (2016). “Characterisation of selected karst springs in Slovenia by means of a time series analysis” in Stevanović, Z., Krešič, N., Kukurić, N. Eds., Karst without Boundaries, CRC Press, Leiden, Nizozemska.
- Kranjc, M. (2007). Poročilo o kakovosti podzemne vode v Sloveniji v letih 2004 in 2005 (Report on the Quality of Groundwater in Slovenia in 2004 and 2005). Ministrstvo za okolje in prostor, Agencija Republike Slovenije za okolje, Ljubljana.
- Laaha, G., Blöschl, G. (2006). Seasonality indices for regionalizing low flows. Hydrological Processes, 20(18), 3851–3878. https://doi.org/10.1002/hyp.6161.
- Lamb, R., Beven, K. (1997). Using interactive recession curve analysis to specify a general catchment storage model. Hydrology and Earth System Sciences 1, 101–113. https://doi.org/10.5194/hess-1-101-1997.
- Langbein W. B. (1938). Some channel storage studies and their application to the determination of infiltration. Eos, Transactions, American Geophysical Union 19: 435‒447.
- Morlet, G. A., Fourgeau, I., Giard, D. (1982). Wave propagation and sampling theory. Geophysics 47: 203‒23. https://doi.org/10.1190/1.1441328.
- Pavlovec, R. (1961). Nekaj misli o sprijemanju mlajšega prodnega nanosa v Ljubljanski kotlini. Geologija 30, 287–335.
- Petek, M., Kobold, M., Šraj, M. (2015). Low-flow analysis of streamflows in Slovenia using R software and lfstat package. Acta Hydrotechnica 27/46 (2014): 13–28.
- Petrič, M. (2010). “Characterization, exploitation, and protection of the Malenščica karst spring, Slovenia: case study” in Krešić, N., Stevanović, Z. Eds., Groundwater hydrology of springs: engineering, theory, management, and sustainability. Burlington, MA: Butterworth-Heinemann, 592 str.
- R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Sezen, C., Bezak, N., Šraj, M. (2018). Hydrological modelling of the karst Ljubljanica River catchment using lumped conceptual model. Acta hydrotechnica 31/55: 87‒100. https://doi.org/10.15292/acta.hydro.2018.06
- Šušteršič, F. (1994). Reka sedmerih imen: s poti po notranjskem krasu. Logatec: Naklo. 23 str.
- Smakhtin, V. U. (2001). Low flow hydrology – a review. Journal of Hydrology 240: 147–186. https://doi.org/10.1016/S0022-1694(00)00340-1.
- Tallaksen, L. M. (1989). Analysis of time variability in recessions. IAHS Publ., 187: 85−96.
- Tallaksen, L. M. (1991). Recession rate and variability with special emphasis upon the influence of evapotranspiration. Dr. Scient. Thesis, Univ. Oslo, Rapp. Hydrol. 25.
- Tallaksen, L. M. (1995). A review of baseflow recession analysis. Journal of Hydrology 165(1–4): 349–370. https://doi.org/10.1016/0022-1694(94)02540-R.
- Thomas, B. F., Vogel, R. M., Famiglietti, J. S. (2015). Objective hydrograph baseflow recession analysis. Journal of hydrology 525: 102‒112. http://dx.doi.org/10.1016/j.jhydrol.2015.03.028
- Vogel, R. M., Kroll C. N. (1996). Estimation of baseflow recession constants: Water Resources Management, 10, 4: 303−320. https://doi.org/10.1007/BF00508898.
- WMO (2008). Manual on Low-flow Estimation and Prediction. Operational Hydrology Report No. 50, WMO-No. 1029, 136 str.