Quartz Sand Use in Hydraulic and Sanitary Engineering
- Authors: Tamara Kuzmanić, Matjaž Mikoš
- Citation: Acta hydrotechnica, vol. 33, no. 58, pp. 13-28, 2020. https://doi.org/10.15292/acta.hydro.2020.02
- Abstract: An overview of the production and usage of quartz sand as a special sort of sand for civil engineering is presented – from the formation of sand deposits, through mining and processing methods, to its final use, with an emphasis on its use in civil engineering, i.e. in water filtration. Quartz is found in sedimentary, metamorphic, and igneous rocks. During sand formation in the fluvial environment, quartz grains are highly resistant to weathering and mechanical wear, and can be transported a long way without changes to size and form. Therefore, quartz is the main constituent of most natural sands. Quartz and quartz sand are ubiquitous raw materials used in a wide range of products in civil engineering due to their chemical inertia and high temperature resistance. An example of a quartz sand deposit and processing plant in Slovenia is presented as a practical case study on quartz sand application. The described applications using quartz sand are the best available technologies in sanitary and hydraulic engineering to be used for a move towards a circular economy, smart houses, and smart cities.
- Keywords: quartz sand, water treatment, sand filter, green infrastructure, filter media, granular media, granulometry
- Full text: a33tk.pdf
- References:
- Abdel-Shafy, H.I., El-Khateeb, M.A., Shehata, M. (2014). Greywater treatment using different designs of sand filters. Desalination and Water Treatment 52, 5237–5245. https://doi.org/10.1080/19443994.2013.813007.
- Aloulou H., Bouhamed H., Amar R.B., Khemakhem S. (2017). New ceramic microfiltration membrane from Tunisian natural sand: application for tangential wastewater treatment. Desalination and Water Treatment 78, 41–48. https://doi.org/10.5004/dwt.2017.20921.
- Balbay, S. (2019). Recycling of waste foundry sands by chemical washing method. China Foundry 16 (2) 141–146. https://doi.org/10.1007/s41230-019-8144-4
- Boano, F., Caruso, A., Costamagna, E., Ridolfi, L., Fiore, S., Demichelis, F., Galvao, A., Pisoeiro, J., Rizzo, A., Masi, F. (2020). A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science of the total environment 711. https://doi.org/10.1016/j.scitotenv.2019.134731.
- British Geological Survey. (2020). Silica sand: Mineral Planning Factsheet.
- Borek, K., Czapik, P., Dachowski, R. (2020). Recycled Glass as a Substitute for Quartz Sand in Silicate Products. Materials 13(5), 1030. https://doi.org/10.3390/ma13051030.
- Bradshaw, S.L., Benson, C.H., Olenbush, E.H., Melton, J.S. (2012). Using foundry sand in green infrastructure construction. Green Streets and Highways Conference 2010, ASCE, 280–298. https://doi.org/10.1061/41148(389)24.
- Brandt, M.J., Johnson, K.M., Elphinston, A.J., Ratnayaka, D.D. (2017). Twort’s Water Supply. 7th Ed. Butterworth-Heinemann, 898 pp.
- BS EN 12904:2005 Products used for treatment of water intended for human consumption – silica sand and silica gravel.
- Casey, T. J. (2006). Unit Treatment Processes in Water and Wastewater Engineering. Aquavarra Research Limited. Dublin (http://www.aquavarra.ie/Utpbkpdf/chap6.pdf) p.62–77.
- Chen, X., Zhang, L. (2019). Treatment of domestic wastewater in biochar‒packed tidal flow constructed wetland. Ecol. Environ. Sci. 28 (7), 1443–1449.https://doi.org/10.16258/j.cnki.16 74-5906.2019.07.018.
- Curran, M. A. (ed.). (2012). Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products. Scrivener Publishing. ISBN 978-1-118-09972-8 pp.611.
- Drovenik, M., Pleničar, M., Drovenik, F. (1980). Nastanek rudišč v SR Sloveniji = The origin of Slovenian ore deposits. Geologija 23(1), 1–157. http://www.geologija-revija.si/dokument.aspx?id=492
- European Bank for Reconstruction and Development (EBRD). n.a. Sub-sectoral Environmental and Social Guidelines: Stone, Sand and Gravel.
- European Union. (2015). Optimising water reuse in the EU: Final report – Part I. doi: 10.2779/603205
- European Union. (2020). Circular Economy Action Plan: For a cleaner and more competitive Europe.
- Eurostat. (2020a=. Recycling rate of municipal waste. https://ec.europa.eu/eurostat/databrowser/view/t2020_rt120/default/table?lang=en
- Eurostat (2020b). Recycling rate of waste excluding major mineral wastes. https://ec.europa.eu/eurostat/databrowser/view/sdg_12_60/default/table?lang=en
- Eurostat. (2020c=. Landfill rate of waste excluding major mineral wastes. https://ec.europa.eu/eurostat/databrowser/view/t2020_rt110/default/table?lang=en
- Ferreira, H., Leite, M. G. P. (2015=. A Life Cycle Assessment study of iron ore mining. Journal of Cleaner production 108. 1081–1091. https://doi.org/10.1016/j.jclepro.2015.05.140
- Finch, J.A., Wills, B. A. (2016). Wills' Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Eighth Edition. Oxford: Elsevier.
- Forward, H.S., Hatt, B.E., Breen, P., Cook, P.L.M., Deletic, A. (2017). Designing living walls for greywater treatment. Water research 110, 218–232. https://doi.org/10.1016/j.watres.2016.12.018.
- Fuerstenau, M. C., Han K. N. (2003). Principles of mineral processing. Littleton: Society for Mining Metallurgy and Exploration.
- Geološki zavod Slovenije. (2019a). Mineralne surovine v letu 2018. Mineralne surovine 15(1), 1–169. https://www.geo-zs.si/PDF/PeriodicnePublikacije/Bilten_2018.pdf
- Geološki zavod Slovenije. (2019b). Karta pridobivalnih prostorov mineralnih surovin s koncesijo v letu 2018 – Merilo 1:500.000 (Map of Mineral Extraction Areas with Concession in 2018 – Scale 1:500,000). https://www.geo-zs.si/PDF/PeriodicnePublikacije/Karta_koncesije_2018.pdf
- Global Aggregates Information Network GAIN. n.d. GAIN World Map. (https://www.gain.ie/)
- Götze, J. (ed.), Möckel, R. (ed.). (2012). Quartz: Deposits, Mineralogy and Analytics. Springer-Verlag Berlin Heidelberg ISBN: 978-3-642-22160-6 eISBN: 978-3-642-22161-3 Doi: 10.1007/978-3-642-22161-3 p. 2-21.
- Götze, J. (2009). Chemistry, textures and physical properties of quartz – geological interpretation and technical application. Mineralogical Magazine 73(4), 645–671. Doi: 10.1180/minmag.2009.073.4.645.
- Grbeš, A. (2016). A Life Cycle Assessment of Silica Sand: Comparing the Beneficiation Processes. Sustainability 8(1), 11, https://doi.org/10.3390/su8010011.
- Gupta, A., Yan, D. S. (2016). Mineral Processing Design and Operations: An Introduction. Second edition. Oxford: Elsevier.
- Hoffmann, H., Platzer, C., Winker, M., von Muench, E. (2011). Technology review of constructed wetlands: Subsurface flow constructed wetlands for greywater and domestic wastewater treatment. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Eschborn.
- ITACA. (2005). An Introduction to Slow Sand Filtration. (https://www.itacanet.org/doc-archive-eng/water/Intro_SSF.pdf).
- Ivanets A.I., Agabekov V.E. (2017). Ceramic Microfiltration Membranes Based on Natural Silica. Petroleum Chemistry 57-2, 117-126. https://doi.org/10.1134/S0965544117020037.
- Ivanets, A.I., Azarova, T.A., Agabekov, V.E., Azarov, S.M., Batsukh, Ch., Batsuren, D., Prozorovich, V.G., Rat’ko, A.A. (2016). Effect of phase composition of natural quartz raw material on characterization of microfiltration ceramic membranes. Ceramics international 42(2016), 16571–16578. http://dx.doi.org/10.1016/j.ceramint.2016.07.077.
- Jenkins, M.W., Tiwari, S.K., Darby, J. (2011). Bacterial, viral and turbidity removal by intermittent slow sand filtration for household use in developing countries: Experimental investigation and modeling. Water research 45, 6227–6239. https://doi.org/10.1016/j.watres.2011.09.022.
- Kennedy, B. A. (ed.). (2009). Surface Mining, 2nd Edition. Society for Mining, Metallurgy, and Exploration Inc. ISBN: 978-0-87335-303-8.
- Kuzmanić, T. (2018). Gravitacijska koncentracija kremenog pijeska (Gravity concentration of quartz sand). Master’s Thesis. University of Zagreb. Faculty of Mining, Geology and Petroleum Engineering. https://urn.nsk.hr/urn:nbn:hr:169:669586
- Liu, J., Zhu, X., Zhang, H., Wu, F., Wei, B., Chang, Q. (2018). Superhydrophobic coating on quartz sand filter media for oily wastewater filtration. Colloids and Surfaces 553, 509–514. https://doi.org/10.1016/j.colsurfa.2018.06.007.
- Logsdon, G. S. (2008). Water Filtration Practices: including slow sand filters and precoat filtration. American Water Works Association. ISBN 978-1-58321-595-1 p 71–78.
- Lopato, L. R. (2011). Granular filters for water treatment: heterogeneity and diagnostic tools. Technical University of Denmark.
- Maiga, Y., von Sperling, M., Mihelcic, J.R. (2017=. Constructed Wetlands. Global water pathogen project: Part four. Management of risk from excreta and wastewater. https://doi.org/10.14321/waterpathogens.66 (http://www.waterpathogens.org).
- Mikoš, M. (2017). Rečni sediment in mineralni agregati v gradbeništvu = Fluvial Sediments and Mineral Construction Aggregates. Gradbeni vestnik 66, 296-306. Available at: http://www.zveza-dgits.si/recni-sedimenti-in-mineralni-agregati-v-gradbenistvu
- Ministry of natural resources and environment, Department of irrigation and drainage Malaysia (DID). (2009). River sand mining management guideline. ISBN 978-983-41867-2-2.
- Organisation for Economic Co-operation and Development OECD. (2016). Policy Guidance on Resource Efficiency. OECD Publishing, Paris. https://dx.doi.org/10.1787/9789264257344-en.
- Organisation for Economic Co-operation and Development OECD. (2019). Global Mineral Resources Outlook to 2060: Economic Drivers and Environmental Consequences. OECD Publishing, Paris. https://doi.org/10.1787/9789264307452-en.
- Padmalal, D., Maya, K. (2014). Sand Mining: Environmental Impacts and Selected Case Studies. Springer Science + Business Media Dordrecht. ISBN: 978-94-017-9144-1.
- Panjan, J. (2002). Osnove zdravstveno hidrotehnične infrastrukture. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo. ISBN: 961-6167-48-0 p. 50–52.
- Peduzzi, P. (2014). Sand, rarer than one thinks: Article reproduced from United Nations Environment Programme (UNEP) Global Environmental Alert Service (GEAS). Environmental Development 11. 208–218. http://dx.doi.org/10.1016/j.envdev.2014.04.001.
- Pettijohn, F.J., Potter, P.E., Siever, R. (1973). Sand and Sandstone. Springer-Verlag Berlin. e-ISBN-13: 978-1-4615-9974-6.
- Platias, S., Vatalis, K.I., Charalampides, G. (2014). Suitability of quartz sand for different industrial applications. Procedia Economics and Finance 14, 491–498. https://doi.org/10.1016/S2212-5671(14)00738-2.
- Prochaska, C.A., Zouboulis, A.I. (2003). Performance of intermittently operated sand filters: A comparable study, treating wastewater of different origins. Water, Air, and Soil Pollution 147, 367–388. https://doi.org/10.1023/A:1024550000904.
- Prodanovic, V., Hatt, B., McCarthy, D., Zhang, K., Deletic, A. (2017). Green walls for greywater reuse: Understanding the role of media on pollutant removal. Ecological Engineering 102, 625–635. https://doi.org/10.1016/j.ecoleng.2017.02.045.
- Pryor, E. J. (1965). Mineral Processing. Third edition. Essex: Elsevier applied science publishers LTD.
- RIVM. 2016. ReCiPe (2016). A harmonized life cycle impact assessment method at midpoint and endpoint level. Report I: Characterization.
- Rudarska knjiga. (2020). Ravno. https://ms.geo-zs.si/Prostor/Podrobnosti/91 (Mining book).
- Saeed, T., Muntaha, S., Rashid, M., Sun, G., Hasnat, A. (2018). Industrial wastewater treatment in constructed wetlands packed with construction materials and agricultural by-products. J Clean Prod 189, 442–453. https://doi.org/10.1016/j.jclepro.2018.04.115
- Saeed, T., Yasmin, N., Sun, G., Hasnat, A. (2019). The use of biochar and crushed mortar in treatment wetlands to enhance the removal of nutrients from sewage. Environmental Science and Pollution Research 26, 586–599. https://doi.org/10.1007/s11356-018-3637-z
- Shen, Y., Zhuang, L., Zhang, J., Fan, J., Yang, T., Sun, S. (2019). A study of ferric-carbon micro-electrolysis process to enhance nitrogen andphosphorus removal efficiency in subsurface-flow constructed wetlands. Chemical Engineering Journal 359, 706–712. https://doi.org/10.1016/j. cej.2018.11.152.
- Sparks, T., Chase, G. (2016). Filters and filtration handbook. 6th Ed. Butterworth-Heinemann. 445 pp.
- Stephenson, D. (1998). Water supply management. Water science and technology library. Dordrecht. Kluwer Academic Publishers. ISBN: 0-7923-5136-3 p 250–256.
- Tatari, K. (2014). Nitrification biokinetics in rapid sand filters for drinking water treatment. DTU Environment.
- Teemusk, A., Mander, Ü. (2011). The Influence of Green Roofs on Runoff Water Quality: A Case Study from Estonia. The Water Resources Management 25, 3699. https://doi.org/10.1007/s11269-011-9877-z.
- The Silica and Moulding Sands Association (Samsa), n.a. Silica, Economic importance (https://www.samsa.org.uk/silica/economic_importance.php).
- Torrens, A., Molle, P., Boutin, C., Salgot, M. (2009). Removal of bacterial and viral indicators in vertical flow constructed wetlands and intermittent sand filters. Desalination 246, 169–178. https://doi.org/10.1016/j.desal.2008.03.050.
- Torres, A., Brandt, J., Lear, K., Liu, J. (2017). A looming tragedy of the sand commons. Science 357 (6355), 970–971. https://doi.org/10.1126/science.aao0503.
- UNEP. (2004). Why Take A Life Cycle Approach. ISBN: 92-807-24500-9
- UNEP. (2019). Sand and sustainability: Finding new solutions for environmental governance of global sand resources. GRID-Geneva, United Nations Environment Programme, Geneva, Switzerland. ISBN: 978-92-807-3751-6.
- Vrkljan, D. (2011). Kremeni pijesci. Tehnologija nemetalnih mineralnih sirovina: interna skripta. (Quartz sands. Technology of nonmetallic raw materials: internal script) Zagreb: Rudarsko-geološko-naftni fakultet, Sveučilište u Zagrebu (in Croatian).
- Wang, H., Xu, J., Sheng, L. (2020). Preparation of straw biochar and application of constructed wetland in China: A review. Journal of Cleaner Production 273, 123131. https://doi.org/10.1016/j.jclepro.2020.123131.
- World Health Organization. (2002). Managing Water in the Home: Accelerated Health Gains from Improved Water Supply.
- Yang, Y., Wang, Z.M., Liu, C., Guo, X.C. (2012). Enhanced P, N and C removal from domestic wastewater using constructed wetland employing construction solid waste (CSW) as main substrate. Water Sci Technol 66(5), 1022–1028. https://doi.org/10.2166/wst.2012.277
- Wang, Z., Wang, W., Zhu, X., Wang, J., Han, Z., Hua, Y. (2014). Adsorption-Desorption Characteristics of E.coli by Quartz Sands of Different Particle Size. Advanced Materials Research 955–959, 436–444. https://doi.org/10.4028/www.scientific.net/AMR.955-959.436
- Žmavčič, M. (1991). Kremenove surovine ter nahajališča, uporaba in raziskave kremenovih surovin. (Quartz raw materials and deposits, use and research). Novo Mesto: Industrija in rudniki nekovin Kremen Novo Mesto (in Slovene).