One-dimensional sediment transport modelling with Engelund–Hansen and Ackers–White transport equations for the Lower Danube River
- Authors: Davor Kvočka
- Citation: Acta hydrotechnica, vol. 34, no. 61, pp. 103-117, 2021. https://doi.org/10.15292/acta.hydro.2021.08
- Abstract: Sediment transport can have a negative impact on riparian environments, as it can lead to the deterioration of ecological diversity and increase flood risks. Sediment transport modelling is thus a key tool in river basin management and the development of river training structures. In this study, we examined the appropriateness of 1D modelling for total sediment transport loads using the Engelund–Hansen and Ackers–White transport equations for the Lower Danube River. The study evaluated the effect of sediment grading on the accuracy of 1D model results, the appropriateness of 1D sediment transport modelling within technical or engineering projects, and the appropriateness of the Engelund–Hansen and Ackers–White equations for estimating sediment yield in the area of the Lower Danube River. The model results have been compared to field measurements, with the accuracy of the modelling results being evaluated with statistical tests. The obtained results show: (i) the sediment grading does not have a significant impact on the 1D modelling results, (ii) 1D sediment transport modelling gives sufficiently accurate results for practical engineering use (e.g. the estimation of dredging activities), and (iii) the Engelund–Hansen equation is generally better for sediment transport modelling in the Lower Danube River.
- Keywords: river sediment; sediment transport modelling; river hydraulics; Engelund–Hansen equation; Ackers–White equation; Danube.
- Full text: a34dk.pdf
- References:
- Ackers, P. in White, W. R. (1973). Sediment transport: new approach and analysis. Journal of the Hydraulics Division, 99(11), 2041–2060. https://doi.org/10.1061/JYCEAJ.0003791.
- Ackers, P. in White, W. R. (1993). Sediment transport in open channels: Ackers and White update. Proceedings of the Institution of Civil Engineers - Water, Maritime and Energy, 101(4), 247–249. https://doi.org/10.1680/iwtme.1993.25490.
- Allan, J. D. in Castillo, M. M. (2007). Stream Ecology: Structure and function of running waters. Springer Netherlands, Netherlands: 436 str. https://doi.org/10.1007/978-1-4020-5583-6.
- Bagnold, R. A. (1966). An approach to the sediment transport problem from general physics. United States Government Printing Office, Washington, USA, 422-I: 37 str. Dostopno na: http://pubs.er.usgs.gov/publication/pp422I (Pridobljeno: 02/04/2021).
- Benisiewicz, B., Momblanch, A., Leggatt, A. in Holman, I. P. (2021). Erosion and Sediment Transport Modelling to Inform Payment for Ecosystem Services Schemes. Environmental Modeling & Assessment 26(1), 89–102. DOI: https://doi.org/10.1007/s10666-020-09723-9.
- Benmansour, M., Mabit, L., Nouira, A., Moussadek, R., Bouksirate, H., Duchemin, M. in Benkdad, A. (2013). Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137Cs and 210Pbex. Journal of Environmental Radioactivity 115, 97–106. https://doi.org/10.1016/j.jenvrad.2012.07.013.
- Bisantino, T., Gentile, F., Milella, P. in Trisorio Liuzzi, G. (2010). Effect of Time Scale on the Performance of Different Sediment Transport Formulas in a Semiarid Region. Journal of Hydraulic Engineering 136(1), 56–61. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000125.
- CH2M. (2017a). FAST Danube: Measurements Report-first campaign - Surveys, investigations & measurements CH2M, Bucharest, Romania: 56 str. Dostopno na: http://www.fastdanube.eu/sites/default/files/official_docs/FAST-Danube_MeasurementsReport_FirstCampaign_31Jul17_EN_FinVer.pdf (Pridobljeno: 22/03/2021).
- CH2M. (2017b). FAST Danube: Measurements Report-second campaign - Surveys, investigations & measurements CH2M, Bucharest, Romania: 30 str. Dostopno na: http://www.fastdanube.eu/sites/default/files/official_docs/Report%20Campaign%202_EN_20171003%20fin.pdf (Pridobljeno: 22/03/2021).
- CH2M. (2018). FAST Danube: New Mathematical Models Report - Development/Calibration/Validation. CH2M, Bucharest, Romania: 131 str. Dostopno na: http://www.fastdanube.eu/sites/default/files/official_docs/FAST-Danube_ModelBuildCalibrationReport_Revised_23Jan18_clean1.pdf (Pridobljeno: 22/03/2021).
- Choi, S.-U. in Lee, J. (2015). Prediction of Total Sediment Load in Sand-Bed Rivers in Korea Using Lateral Distribution Method. Journal of the American Water Resources Association (JAWRA) 51(1), 214–225. https://doi.org/10.1111/jawr.12249.
- Church, M. (2007). Multiple scales in rivers. In H. Habersack, H. Piégay, & M. Rinaldi (Eds.), Developments in Earth Surface Processes 11, 3–28. https://doi.org/10.1016/S0928-2025(07)11111-1.
- Čož, N., Ahmadian, R. in Falconer, R. A. (2019). Implementation of a Full Momentum Conservative Approach in Modelling Flow Through Tidal Structures. Water 11(9), 1917. https://doi.org/10.3390/w11091917.
- De Sutter, R., Verhoeven, R. in Krein, A. (2001). Simulation of sediment transport during flood events: laboratory work and field experiments. Hydrological Sciences Journal 46(4), 599–610. https://doi.org/10.1080/02626660109492853.
- Einstein, H. A. (1950). The Bed-Load Function for Sediment Transportation in Open Channel Flows. United States Department of Agriculture, Economic Research Service, Washington, USA: 89 str. Dostopno na: https://EconPapers.repec.org/RePEc:ags:uerstb:156389 (Pridobljeno: 01/04/2021).
- Engelund, F. in Hansen, E. (1967). A monograph on sediment transport in alluvial streams. Technical University of Denmark, Copenhagen, Denmark: 63 str. Dostopno na: https://repository.tudelft.nl/islandora/object/uuid:81101b08-04b5-4082-9121-861949c336c9 (Pridobljeno: 22/03/2021).
- Guan, M., Wright, N. G., Sleigh, P. A. in Carrivick, J. L. (2015). Assessment of hydro-morphodynamic modelling and geomorphological impacts of a sediment-charged jökulhlaup, at Sólheimajökull, Iceland. Journal of Hydrology 530, 336–349. https://doi.org/10.1016/j.jhydrol.2015.09.062.
- Gupta, H. V., Sorooshian, S. in Yapo, P. O. (1999). Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. Journal of Hydrologic Engineering 4(2), 135–143. https://doi.org/CE)1084-0699(1999)4:2(135).
- Guy, H. P., Simons, D. B. in Richardson, E. V. (1966). Summary of alluvial channel data from flume experiments, 1956-61. United States Government Printing Office, Washington, USA, 462-I: 96 str. Dostopno na: http://pubs.er.usgs.gov/publication/pp462I (Pridobljeno: 02/04/2021).
- Hicks, M. D. in Gomez, B. (2016). Sediment transport. In G. M. Kondolf & H. Piégay (Eds.), Tools in Fluvial Geomorphology 324-356. Chichester, UK ; Hoboken, NJ: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118648551.ch15.
- Huybrechts, N., Zhang, Y. F. in Verbanck, M. A. (2013). Coupled estimation of the energy slope and associated sand-silt transport during high stream power events in alluvial rivers. International Journal of Sediment Research, 28(1), 58–65. https://doi.org/10.1016/S1001-6279(13)60018-9.
- Jacobs. (2021a). Flood Modeller. Dostopno na: https://www.floodmodeller.com/ (Pridobljeno: 06/04/2021).
- Jacobs. (2021b). Flood Modeller - Support Manual. Dostopno na: http://help.floodmodeller.com/floodmodeller/#t=General_Introduction.htm (Pridobljeno: 06/04/2021).
- Kiat, C. C., Ghani, A. A., Zakaria, N. A., Hasan, Z. A. in Abdullah, R. (2005). Sediment transport equation assessment for selected rivers in Malaysia. International Journal of River Basin Management 3(3), 203–208. https://doi.org/10.1080/15715124.2005.9635259.
- Kvočka, D., Falconer, R. A. in Bray, M. (2015). Appropriate model use for predicting elevations and inundation extent for extreme flood events. Natural Hazards 79(3), 1791–1808. https://doi.org/10.1007/s11069-015-1926-0.
- MacArthur, R. C., Neill, C. R., Hall, B. R., Galay, V. J. in Shvidchenko, A. B. (2008). Overview of Sedimentation Engineering. In M. Garcia (Ed.), Sedimentation Engineering: Processes, Measurements, Modeling, and Practice (str. 1-20): American Society of Civil Engineers. https://doi.org/10.1061/9780784408148.ch01.
- Meyer-Peter, E. in Müller, R. (1948). Formulas for bed-load transport. Proceedings of the 2nd Meeting of the International Association for Hydraulic Research, Stcokholm, Sweden, 39-64.
- Molinas, A. in Wu, B. (1998). Effect of Size Gradation on Transport of Sediment Mixtures. Journal of Hydraulic Engineering 124(8), 786–793. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:8(786).
- Molinas, A. in Wu, B. (2001). Transport of sediment in large sand-bed rivers. Journal of Hydraulic Research 39(2), 135–146. https://doi.org/10.1080/00221680109499814.
- Moriasi, N. D., Arnold, G. J., Van Liew, W. M., Bingner, L. R., Harmel, D. R. in Veith, L. T. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE 50(3), 885–900. https://doi.org/10.13031/2013.23153.
- Naito, K., Ma, H., Nittrouer, J. A., Zhang, Y., Wu, B., Wang, Y., Fu, X. in Parker, G. (2019). Extended Engelund–Hansen type sediment transport relation for mixtures based on the sand-silt-bed Lower Yellow River, China. Journal of Hydraulic Research 57(6), 770–785. https://doi.org/10.1080/00221686.2018.1555554.
- Nash, J. E. in Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
- Overton, D. E. in Meadows, M. E. (1976). Stormwater Modeling. Academic Press: 370 str. https://doi.org/10.1016/B978-0-12-531550-0.50001-X.
- Papanicolaou, A. N., Elhakeem, M., Krallis, G., Prakash, S. in Edinger, J. (2008). Sediment Transport Modeling Review - Current and Future Developments. Journal of Hydraulic Engineering 134(1), 1–14. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:1(1).
- Parker, G. (1990). Surface-based bedload transport relation for gravel rivers. Journal of Hydraulic Research 28(4), 417–436. https://doi.org/10.1080/00221689009499058.
- Petkovsek, G. (2020). A review of Ackers and White sediment transport predictor. Proceedings of the Institution of Civil Engineers - Water Management, 173(1), 1–13. https://doi.org//10.1680/jwama.18.00039.
- Recking, A. (2013). Simple Method for Calculating Reach-Averaged Bed-Load Transport. Journal of Hydraulic Engineering, 139(1), 70–75. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000653.
- Rickenmann, D. (1991). Hyperconcentrated Flow and Sediment Transport at Steep Slopes. Journal of Hydraulic Engineering 117(11), 1419–1439. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:11(1419).
- Shvidchenko, A. B., Pender, G. in Hoey, T. B. (2001). Critical shear stress for incipient motion of sand/gravel streambeds. Water Resources Research 37(8), 2273–2283. https://doi.org/10.1029/2000WR000036.
- Sinnakaudan, S. K., Ab Ghani, A., Ahmad, M. S. in Zakaria, N. A. (2006). Multiple Linear Regression Model for Total Bed Material Load Prediction. Journal of Hydraulic Engineering 132(5), 521–528. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:5(521).
- Smart, G. M. (1984). Sediment Transport Formula for Steep Channels. Journal of Hydraulic Engineering 110(3), 267–276. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:3(267).
- Šraj, M., Bezak, N. in Brilly, M. (2012). Vpliv izbire metode na rezultate verjetnostnih analiz konic, volumnov in trajanj visokovodnih valov Save v Litiji. Acta hydrotechnica 25(42), 41–58.
- Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D. in Kim, S. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling & Software 90, 201–216. https://doi.org/10.1016/j.envsoft.2017.01.006.
- van Rijn, L. C. (1984a). Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering 110(10), 1431–1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431).
- van Rijn, L. C. (1984b). Sediment Transport, Part II: Suspended Load Transport. Journal of Hydraulic Engineering 110(11), 1613–1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613).
- van Rijn, L. C. (2007a). Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-Load Transport. Journal of Hydraulic Engineering 133(6), 649–667. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(649).
- van Rijn, L. C. (2007b). Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport. Journal of Hydraulic Engineering 133(6), 668–689. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(668).
- Westrich, B. in Juraschek, M. (1985). Flow transport capacity for suspended sediment. Proceedings of the 21st IAHR World Congress, Melbourne, Australia, 590–594.
- Wiberg, P. L. in Smith, J. D. (1989). Model for Calculating Bed Load Transport of Sediment. Journal of Hydraulic Engineering 115(1), 101–123. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:1(101).
- Wu, B., van Maren, D. S. in Li, L. (2008). Predictability of sediment transport in the Yellow River using selected transport formulas. International Journal of Sediment Research 23(4), 283–298. https://doi.org/10.1016/S1001-6279(09)60001-9.