Nitrate Nitrogen (NO3-N) Export Regimes Based on High-frequency Measurements in the Kuzlovec Stream Catchment
- Authors: Klaudija Sapač, Nejc Bezak, Andrej Vidmar, Simon Rusjan
- Citation: Acta hydrotechnica, vol. 34, no. 60, pp. 25-38, 2021. https://doi.org/10.15292/acta.hydro.2021.03
- Abstract: In the paper, the determination of nitrate nitrogen (NO3-N) export regimes from the Kuzlovec catchment during rainfall events is presented employing various determination methods: the ratio of coefficient of variation of NO3-N concentration and discharge (CVC/CVQ), the slope of the regression line to the points of concentration and discharge logarithms (b), both mentioned indices together, and the relative change of the NO3-N concentration during the event (Crs). According to previous analyses, the amount of exported NO3-N during rainfall events comprises approx. 30% of the total export amount, while from a temporal point of view, rainfall events represent only 10% of the time. Export regimes were identified as chemostatic (concentration does not change with discharge) and chemodynamic (concentration changes with discharge). The latter were further divided into dilution and flushing regimes. 43 rainfall events from the period April 2018–April 2020 were included in the analysis. For these events, high-frequency data of 20-minute intervals were available for concentration and discharge. All applied indices showed that the catchment responds differently from a concentration-discharge perspective and that chemodynamic behaviour is predominant, with flushing most frequently prevalent. A possible seasonal connection with regime diversity was tested using the non-parametric, statistical Wilcoxon test. A statistically significant difference was not found for any of the indices. Nevertheless, a detailed analysis of CVC/CVQ revealed that the ratio is likely related to seasonal variability in rainfall characteristics and consequently to the hydrological conditions in the catchment. Hence, it would be of great importance to include data about rainfall and hydrological properties in future studies.
- Keywords: nitrate nitrogen (NO3-N), export regime, concentration–discharge relationship, Wilcoxon test.
- Full text: a34ks.pdf
- References:
- ARSO. (2020a). Arhiv opazovanih in merjenih meteoroloških podatkov po Sloveniji. http://www.meteo.si/met/sl/archive/ (Pridobljeno 8. julija 2020).
- ARSO (2020b). Arhivski podatki: kakovost voda. https://www.arso.gov.si/vode/podatki/ (Pridobljeno 20. julija 2020).
- ARSO. (2020c). Referenčna evapotranspiracija in padavine samodejnih postaj (dnevni podatki od leta 2017) https://meteo.arso.gov.si/met/sl/agromet/data/arhiv_etp/ (Pridobljeno 20. decembra 2020).
- Aubert, A. H., Thrun, M. C., Breuer, L., Ultsch, A. (2016). Knowledge discovery from high-frequency stream nitrate concentrations: Hydrology and biology contributions. Scientific Reports. 6, 1–8. https://doi.org/10.1038/srep31536.
- Baker, E. B., Showers, W. J. (2019). Hysteresis analysis of nitrate dynamics in the Neuse River, NC. Science of Total Environment 652: 889–899. https://doi.org/10.1016/j.scitotenv.2018.10.254.
- Barros, C. A. P. d., Tiecher, T., Ramon, R., Santos, D. R. do., Bender, M. A., Evrard, O., Ayrault, S., Minella, J. P. G. (2020). Investigating the relationships between chemical element concentrations and discharge to improve our understanding of their transport patterns in rural catchments under subtropical climate conditions. Science of Total Environment 748, 141345. https://doi.org/10.1016/j.scitotenv.2020.141345.
- Basu, N. B., Destouni, G., Jawitz, J. W., Thompson, S. E., Loukinova, N. V., Darracq, A., Zanardo, S., Yaeger, M., Sivapalan, M., Rinaldo, A., Rao, P. S. C. (2010). Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophysical Research Letters 37, 1–5. https://doi.org/10.1029/2010GL045168.
- Bernal, S., Butturini, A., Sabater, F. (2006). Inferring nitrate sources through end member mixing analysis in an intermittent Mediterranean stream. Biogeochemistry 81, 269–289. https://doi.org/10.1007/s10533-006-9041-7.
- Bezak, N., Rusjan, S., Fijavž, M.K., Mikoš, M., Šraj, M. (2017). Estimation of suspended sediment loads using copula functions. Water 9. https://doi.org/10.3390/w9080628.
- Bezak, N., Rusjan, S., Petan, S., Sodnik, J., Mikoš, M. (2015). Estimation of soil loss by the WATEM/SEDEM model using an automatic parameter estimation procedure. Environmental Earth Sciences 74, 5245–5261. https://doi.org/10.1007/s12665-015-4534-0.
- Bezak, N., Šraj, M., Rusjan, S., Kogoj, M., Vidmar, A., Sečnik, M., Brilly, M., Mikoš, M. (2013). Primerjava Dveh Sosednjih Eksperimentalnih Hudourniških Porečij: Kuzlovec in Mačkov Graben = Comparison Between Two Adjacent Experimental Torrential Watersheds: Kuzlovec and Mačkov Graben. Acta Hydrotechnica 45, 85–97.
- Bieroza, M. Z., Heathwaite, A. L., Bechmann, M., Kyllmar, K., Jordan, P. (2018). The concentration-discharge slope as a tool for water quality management. Science of Total Environment 630, 738–749. https://doi.org/10.1016/j.scitotenv.2018.02.256.
- Burt, T. P., Howden, N. J. K., Worrall, F., McDonnell, J. J. (2011). On the value of long-term, low-frequency water quality sampling: Avoiding throwing the baby out with the bathwater. Hydrological Processes 25, 828–830. https://doi.org/10.1002/hyp.7961.
- Butturini, A., Gallart, F., Latron, J., Vazquez, E., Sabater, F. (2006). Cross-site comparison of variability of DOC and nitrate c-q hysteresis during the autumn-winter period in three Mediterranean headwater streams: A synthetic approach. Biogeochemistry 77, 327–349. https://doi.org/10.1007/s10533-005-0711-7.
- Čotar, K., Pehani, P., Veljanovski, T. (2018). Leaf Area Index, MODIS MCD15A3, obdobje 2002–2016.
- Duncan, J. M., Band, L. E., Groffman, P. M. (2017a). Variable nitrate concentration–discharge relationships in a forested watershed. Hydrological Processes 31, 1817–1824. https://doi.org/10.1002/hyp.11136.
- Duncan, J. M., Welty, C., Kemper, J. T., Groffman, P.M., Band, L.E. (2017b). Dynamics of nitrate concentration-discharge patterns in an urban watershed. Water Resources Research 53, 7349–7365. https://doi.org/10.1002/2017WR020500.
- Dupas, R., Jomaa, S., Musolff, A., Borchardt, D., Rode, M. (2016). Disentangling the influence of hydroclimatic patterns and agricultural management on river nitrate dynamics from sub-hourly to decadal time scales. Science of Total Environment 571, 791–800. https://doi.org/10.1016/j.scitotenv.2016.07.05.
- Exner-Kittridge, M., Strauss, P., Blöschl, G., Eder, A., Saracevic, E., Zessner, M. (2016). The seasonal dynamics of the stream sources and input flow paths of water and nitrogen of an Austrian headwater agricultural catchment. Science of Total Environment 542, 935–945. https://doi.org/10.1016/j.scitotenv.2015.10.15.
- Godsey, S. E., Kirchner, J.W., Clow, D. W. (2009). Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrological Processes 23, 1844–1864. https://doi.org/10.1002/hyp.7315.
- Gotway, C. A., Helsel, D. R., Hirsch, R. M. (1994). Statistical Methods in Water Resources. Technometrics 36, 323. https://doi.org/10.2307/1269385.
- Huebsch, M., Fenton, O., Horan, B., Hennessy, D., Richards, K.G., Jordan, P., Goldscheider, N., Butscher, C., Blum, P. (2014). Mobilisation or dilution? Nitrate response of karst springs to high rainfall events. Hydrology and Earth System Sciences 18, 4423–4435. https://doi.org/10.5194/hess-18-4423-2014.
- Judd, K. E., Likens, G. E., Groffman, P. M. (2007). High nitrate retention during winter in soils of the Hubbard Brook Experimental Forest. Ecosystems 10, 217–225. https://doi.org/10.1007/s10021-007-9027-x.
- Kirchner, J. W., Feng, X., Neal, C., Robson, A. J. (2004). The fine structure of water-quality dynamics: The (high-frequency) wave of the future. Hydrological Processes 18, 1353–1359. https://doi.org/10.1002/hyp.5537.
- Lewis, W. M., Melack, J. M., McDowell, W. H., McClain, M., Richey, J. E. (1999). Nitrogen yields from undisturbed watersheds in the Americas. Biogeochemistry 46, 149–162. https://doi.org/10.1007/BF01007577.
- Likens, G. E., Bormann, F. H. (2013). Biogeochemistry in a Forested Ecosystem. Springer. https://doi.org/10.1007/978-1-4614-7810-2.
- MKGP. (2018). Grafični podatki RABA za celo Slovenijo. Ministrstvo za kmetijstvo gozdarstvo in prehrano. https://rkg.gov.si/vstop/ (Pridobljeno 6. maja 2019).
- Musolff, A., Schmidt, C., Selle, B., Fleckenstein, J. H. (2015). Catchment controls on solute export. Advances in Water Resources 86, 133–146. https://doi.org/10.1016/j.advwatres.2015.09.026.
- Oeurng, C., Sauvage, S., Sánchez-Pérez, J. M. (2010). Temporal variability of nitrate transport through hydrological response during flood events within a large agricultural catchment in south-west France. Science of Total Environment 409, 140–149. https://doi.org/10.1016/j.scitotenv.2010.09.006.
- Ogris, N., Kobler, A., Čotar, K., Pehani, P., Veljanovski, T. (2018). VegX–Vegetacijski indeksi v Sloveniji, spletna aplikacija in interaktivna karta. https://www.zdravgozd.si/projekti/vegx/ (Pridobljeno 15. maja 2020)
- OTT. (2020). Hydrolab MS5 - Mulitparameter Mini Sonde. https://www.ott.com/products/water-quality-2/hydrolab-ms5-mulitparameter-mini-sonde-57/ (Pridobljeno 15. maja 2019)
- Pellerin, B. A., Stauffer, B. A., Young, D. A., Sullivan, D. J., Bricker, S. B., Walbridge, M. R., Clyde, G. A., Shaw, D. M. (2016). Emerging Tools for Continuous Nutrient Monitoring Networks: Sensors Advancing Science and Water Resources Protection. Journal of the American Water Resources Association 52, 993–1008. https://doi.org/10.1111/1752-1688.12386.
- Rodríguez‐Blanco, M. L., Taboada‐Castro, M. M., Arias, R., Taboada‐Castro, M. T. (2018). Inter‐ and Intra‐Annual Variability of Nitrogen Concentrations in the Headwaters of the Mero River. V: Amanullah, K. (ur.), Fahad, S. (ur.). Nitrogen in Agriculture. Croatia, Rijeka, IntechOpen: 3−16. http://dx.doi.org/10.5772/intechopen.69996.
- Rusjan, S., Mikoš, M., Bezak, N. (2014). Vodna erozija v porečju Gradaščice. Ujma 21, 79–84.
- Rusjan, S., Vidmar, A. (2017). The role of seasonal and hydrological conditions in regulating dissolved inorganic nitrogen budgets in a forested catchment in SW Slovenia. Science of Total Environment 575, 1109–1118. https://doi.org/10.1016/j.scitotenv.2016.09.178.
- Sapač, K., Vidmar, A., Bezak, N., Rusjan, S. (2020). Lag Times as Indicators of Hydrological Mechanisms Responsible for NO3 -N Flushing in a Forested Headwater Catchment. Water 12: 1092. https://doi.org/10.3390/w12041092.
- Šraj, M., Dirnbek, L., Brilly, M. (2010). The influence of effective rainfall on modeled runoff hydrograph. Jorunal of Hydrology and Hydromechanics 58: 3–14. https://doi.org/10.2478/v10098-010-0001-5.
- Thompson, S. E., Basu, N. B., Lascurain, J., Aubeneau, A., Rao, P. S. C. (2011). Relative dominance of hydrologic versus biogeochemical factors on solute export across impact gradients. Water Resources Research 47: 1–20. https://doi.org/10.1029/2010WR009605.
- van Verseveld, W. J., McDonnell, J. J., Lajtha, K. (2008). A mechanistic assessment of nutrient flushing at the catchment scale. Journal of Hydrology 358: 268–287. https://doi.org/10.1016/j.jhydrol.2008.06.009.
- Wieben, C. M., Baker, R. J., Nicholson, R. S. (2013). Nutrient Concentrations in Surface Water and Groundwater, and Nitrate Source Identification Using Stable Isotope Analysis, in the Barnegat Bay-Little Egg Harbor Watershed, New Jersey, 2010–11. Scientific Investigations Report 2012-5287. Virginia, Reston, U.S. Geological Survey: 44 str.
- Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F., Gao, F., Reed, B. C., Huete, A. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment 84: 471–475. https://doi.org/10.1016/S0034-4257(02)00135-9.