Free-flow discharge characteristics of an overshot gate: A non-hydrostatic numerical modeling approach
- Authors: Yebegaeshet T. Zerihun
- Citation: Acta hydrotechnica, vol. 35, no. 63, pp. 101-115, 2022. https://doi.org/10.15292/acta.hydro.2022.08
- Abstract: Overshot gates, such as the Lay-flat gate, have been used extensively as a flow-measuring structure in open-channel irrigation conveyance systems. Despite their simple geometric shape, the free flow over such structures possesses a substantial curvature of streamline and a steep free-surface slope, thereby making the assumption of a hydrostatic pressure distribution invalid. Accordingly, the shallow-water approach becomes inapplicable for analyzing their discharge characteristics. Using the depth-averaged Boussinesq-type model, the critical flow conditions based on this lower-order approach were extended, leading to an equation for the free-flow coefficient of discharge that implicitly incorporates the flow’s dynamic effects. The developed model was tested for free-flow cases, with a satisfactory agreement between computational results and experimental data. Overall, it was shown that the proposed model is capable of accurately simulating a sharply-curved flow over an overshot gate. The study found that the relative overflow depth prominently affects the characteristics of the curvilinear transcritical flow and hence the free-flow coefficient of discharge. Furthermore, the angle of inclination has a moderate influence on the discharge characteristics of a full-width overshot gate with a face slope flatter than 56°.
- Keywords: Overshot gate, discharge rating curve, pivot weir, non-hydrostatic flow, discharge coefficient, flow measurement.
- Full text: a35yz.pdf
- References:
- Azimfar, S. M., Hosseini, S. A., Khosrojerrdi, A. (2018). Derivation of discharge coefficient of a pivot weir under free- and submerged-flow conditions. Flow Meas. Instrum., 59, 45–51.
- Bakhmeteff, B. A. (1932). Hydraulics of Open Channels. 1st ed.; McGraw-Hill, New York, NY, USA.
- Bazin, H. (1898). Expériences Nouvelles sur L’écoulement en Déversoir (Recent Experiments on the Flow of Water over Weirs). Dunod: Paris, France [in French].
- Berger, R. C. (1994). Strengths and weaknesses of shallow-water equations in steep open-channel flow. In: Proceedings of the National Conference on Hydraulic Engineering, ASCE, Buffalo, NY, USA, 1–5 Aug., 2, 1257–1262.
- Bickley, W. G. (1941). Formulae for numerical differentiation. Math. Gaz., 25(263), 19–27, https://doi.org/10.2307/3606475.
- Bijankhan, M., Ferro, V. (2018). Experimental study and numerical simulation of inclined rectangular weirs. J. Irrig. Drain. Eng., 144(7), https://doi.org/10.1061/(ASCE)IR.1943-4774.0001325.
- Bijankhan, M., Ferro, V. (2020). Experimental modeling of submerged pivot weir. J. Irrig. Drain. Eng., 146(3), https://doi.org/10.1061/(ASCE)IR.1943-4774.0001455.
- Böss, P. (1929). Berechnung der abflussmengen und der wasserspiegellage bei abstürzen und schwellen, unter besonderer berücksichtigung der dabei auftretenden zusatzspannungen (Computation of discharges and water level in the event of falls and rises, taking into account the additional pressures that occur). Wasserkraft und Wasserwirtschaft, 24(2), 13–14; 24(3), 28–33 [in German].
- Bos, M. G. (1989). Discharge Measurement Structures. 3rd rev. ed.; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands.
- Chaudhry, M. H. (2022). Open-Channel Flow. 3rd ed.; Springer Nature Switzerland AG, Cham, Switzerland.
- Curtis, K. W. (2016). Size-Scale Effect on Linear Weir Hydraulics. Master’s Thesis, Utah State University, Logan, UT, USA.
- Di Stefano, C., Ferro, V., Bijankhan, M. (2016). New theoretical solution of the outflow process for a weir with complex shape. J. Irrig. Drain. Eng., 142(10), https://doi.org/10.1061/(ASCE)IR.1943-4774.0001045.
- Fawer, C. (1937). Etude de Quelques Écoulements Permanents à Filets Courbes (Study of Some Permanent Flows with Curved Filaments). Docteur ès Sciences Techniques Thèse, Université de Lausanne, Lausanne, Switzerland [in French], https://doi.org/10.5075/epfl-thesis-9.
- Hager, W. H. (1985). Critical flow condition in open-channel hydraulics. Acta Mech., 54(3–4), 157–179.
- Hager, W. H. (1994). Dammüberfälle (Dam overflows). Wasser und Boden, 45(2), 33–36 [in German].
- Hager, W. H. (2010). Wastewater Hydraulics–Theory and Practice. 2nd ed.; Springer-Verlag: Berlin Heidelberg, Germany.
- Homayoon, L., Jamali, M. (2021). Non-hydrostatic formulation of unsteady single and two-layer flow over topography. J. Hydraul. Eng., 147(2), https://doi.org/10.1061/(ASCE)HY.1943-7900.0001826.
- Horton, R. E. (1907). Weir Experiments, Coefficients, and Formulas. Water-Supply and Irrigation Paper No. 200, U.S. Geological Survey, Government Printing Office, Washington, DC, USA.
- Jaeger, C. (1956). Engineering Fluid Mechanics. Blackie and Son Limited, London and Glasgow, UK.
- Kandaswamy, P. K., Rouse, H. (1957). Characteristics of flow over terminal weirs and sills. J. Hydraul. Div., 83(HY4), 1–13.
- Kindsvater, C. E., Carter, R. W. (1957). Discharge characteristics of rectangular thin-plate weirs. J. Hydraul. Div., 83(HY6), 1–36.
- Lasdon, L. S., Fox, R. L., Ratner, M. W. (1974). Non-linear optimization using the generalized reduced gradient method. Revue Fr. d’Automatique Inform. Rech. Opér., 3(8), 73–103.
- Lauffer, H. (1935). Druck, energie und fliesszustand in gerinnen mit grossen gefälle (Pressure, energy, and flow conditions in channels with high gradients). Wasserkraft und Wasserwirtschaft, 30(7), 78–82 [in German].
- Mahdavi, A., Shahkarami, N. (2020). SPH analysis of free-surface flow over pivot weirs. KSCE, J. Civ. Eng., 24(4), 1183–1194.
- Manz, D. H. (1985). Systems Analysis of Irrigation Conveyance Systems. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada.
- Matthew, G. D. (1991). Higher order, one-dimensional equations of potential flow in open channels. Proc. Instn. Civ. Eng., 91(3), 187–201.
- Montes, J. S., Chanson, H. (1998). Characteristics of undular hydraulic jumps. Experiments and analysis. J. Hydraul. Eng., 124(2), 192–205.
- Rajaratnam, N., Muralidhar, D. (1971). Pressure and velocity distributions for sharp-crested weirs. J. Hydraul. Res., 9(2), 241–248.
- Rouse, H. (1936). Discharge characteristic of the free overfall: Use of crest section as a control provides easy means of measuring discharge. ASCE, Civ. Eng., 6(4), 257–260.
- Steffler, P. M., Jin, Y. (1993). Depth averaged and moment equations for moderately shallow free-surface flow. J. Hydraul. Res., 31(1), 5–17.
- Tim, U. S. (1986). Characteristics of Some Hydraulic Structures Used for Flow Control and Measurement in Open Channels. Ph.D. Thesis, Concordia University, Montreal, QC, Canada.
- U.S. Bureau of Reclamation. (1948). Studies of Crests for Overfall Dams. Hydraulic Investigations, Bulletin 3, Part VI, Boulder Canyon Project Final Reports, Denver, CO, USA.
- Wahlin, B. T., Replogle, J. A. (1994). Flow Measurement Using an Overshot Gate. Research Report, Cooperative Agreement No. 1425-2-FC-81-19060, U.S. Department of the Interior Bureau of Reclamation, Denver, CO, USA.
- Zerihun, Y. T. (2004). A One-Dimensional Boussinesq-Type Momentum Model for Steady Rapidly-Varied Open-Channel Flows. Ph.D. Thesis, The University of Melbourne, Melbourne, Vic, Australia.
- Zerihun, Y. T., Fenton, J. D. (2007). A Boussinesq-type model for flow over trapezoidal profile weirs. J. Hydraul. Res., 45(4), 519–528.
- Zerihun, Y. T. (2017a). A numerical study of non-hydrostatic shallow flows in open channels. Arch. Hydro-Eng. Environ. Mech., 64(1), 17–35.
- Zerihun, Y. T. (2017b). A non-hydrostatic depth-averaged model for hydraulically steep free-surface flows. Fluids, 2(4), https://doi.org/10.3390/fluids2040049.
- Zerihun, Y. T. (2020). Free flow and discharge characteristics of trapezoidal-shaped weirs. Fluids, 5(4), https://doi.org/10.3390/fluids5040238.
- Zerihun, Y. T. (2021a). Non-hydrostatic transitional open-channel flows from a supercritical to a subcritical state. Slovak J. Civ. Eng., 29(2), 39–48.
- Zerihun, Y. T. (2021b). On the numerical modeling of non-hydrostatic flows with dual free surfaces. Water Util. J., 29, 29–42.
- Zigrang, D. J., Sylvester, N. D. (1982). Explicit approximations to the solution of Colebrook’s friction factor equation. AIChE J., 28(3), 514–515.