Different development of global warming (GW) and urban heat island (UHI) in the city of Zagreb
- Authors: Ognjen Bonacci, Adrijana Vrsalović, Tanja Roje-Bonacci
- Citation: Acta hydrotechnica, vol. 36, no. 65, pp. 155-176, 2023. https://doi.org/10.15292/acta.hydro.2023.10
- Abstract: The analysis examines various impacts of global warming (GW) and urban heat island (UHI) effects at four meteorological stations in and around Zagreb, Croatia, spanning from 1981 to 2021. The goal was to determine the intensity and causes of the different warming tendencies and behaviour of air temperature variations observed in various parts of Zagreb. Data from four meteorological stations were analysed: Grič (GR) – a hill within the city area, Maksimir (MA) – an urbanized suburban area, Pleso (PL) – a suburban area unaffected by intense urbanization (airport), and Puntijarka (PU) – atop of Mt. Medvednica. Various statistical methods were applied to analyse trends and variations in annual, monthly, and daily air temperature indices (ATI), including linear regression, the Mann–Kendall test, the day-to-day variability method (DTD), and diurnal air temperature range (DTR) method. All stations showed increasing trends in all ATI. At the PU station, the trend is solely due to GW; at others, both UHI and GW contribute. The MA station exhibits the most pronounced UHI. DTD variability decreases at all stations. GR sees an increasing DTR trend, while PU's trend is decreasing. No DTR trends were observed at the other two stations. Overall, ATI variations are similar, but each location's behaviour differs due to its unique local environment.
- Keywords: Global warming (GW), urban heat island (UHI), air temperature trend, day-to-day air temperature variability (DTD), diurnal air temperature range (DTR), Zagreb City.
- Full text: a36ob2.pdf
- References:
- Alcoforado, M.J., Andrade, H. (2008). Global Warming and the Urban Heat Island, in: Urban Ecology. Springer US, Boston, MA, pp. 249–262. https://doi.org/10.1007/978-0-387-73412-5_14.
- Allegrini, J., Carmeliet, J. (2018). Simulations of local heat islands in Zürich with coupled CFD and building energy models. Urban Clim 24, 340–359. https://doi.org/10.1016/j.uclim.2017.02.003.
- Antoszewski, P., Krzyżaniak, M., Świerk, D. (2022). The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone. Int J Environ Res Public Health 19, 4365. https://doi.org/10.3390/ijerph19074365.
- Bonacci, O., Andrić, I., Roje-Bonacci, T. (2018). Increasing trends of air temperature in urban area: a case study from four stations in Zagreb city area. Vodoprivreda 50, 203–214.
- Bonacci, O., Roje Bonacci, T. (2018). Analyses of the Zagreb Grič observatory air temperatures indices for the period 1881 to 2017. Acta hydrotechnica. https://doi.org/10.15292/acta.hydro.2018.05.
- Bonacci, O., Roje-Bonacci, T., Vrsalović, A. (2022). The day-to-day temperature variability method as a tool for urban heat island analysis: A case of Zagreb-Grič Observatory (1887–2018). Urban Clim 45, 101281. https://doi.org/10.1016/j.uclim.2022.101281.
- Brzoja, D. (2012). Analysis of occurrence of fogin the wider Zagreb region. University of Zagreb, Zagreb.
- Camilloni, I., Barros, V. (1997). On the Urban Heat Island effect dependence on temperature trends. Clim Change 37, 665–681. https://doi.org/10.1023/A:1005341523032.
- Cekinir, S., Ozgener, O., Ozgener, L. (2022). A study on heating and cooling requirements for green buildings and refugee settlements. International Journal of Global Warming 26, 391. https://doi.org/10.1504/IJGW.2022.122432.
- Clay, R., Guan, H., Wild, N., Bennett, J., Vinodkumar, Ewenz, C. (2016). Urban Heat Island traverses in the City of Adelaide, South Australia. Urban Clim 17, 89–101. https://doi.org/10.1016/j.uclim.2016.06.001.
- de Munck, C., Pigeon, G., Masson, V., Meunier, F., Bousquet, P., Tréméac, B., Merchat, M., Poeuf, P., Marchadier, C. (2013). How much can air conditioning increase air temperatures for a city like Paris, France? International Journal of Climatology 33, 210–227. https://doi.org/10.1002/joc.3415.
- Deluka-Tibljaš, A., Cuculić, M., Šurdonja, S., Babić, S. (2012). Analysis of pavement surface heating in urban areas. Journal of the Croatian Association of Civil Engineers 64, 127–134. https://doi.org/10.14256/JCE.641.2011.
- Easterling, D.R., Horton, B., Jones, P.D., Peterson, T.C., Karl, T.R., Parker, D.E., Salinger, M.J., Razuvayev, V., Plummer, N., Jamason, P., Folland, C.K. (1997). Maximum and Minimum Temperature Trends for the Globe. Science (1979) 277, 364–367. https://doi.org/10.1126/science.277.5324.364.
- Giridharan, R., Kolokotroni, M. (2009). Urban heat island characteristics in London during winter. Solar Energy 83, 1668–1682. https://doi.org/10.1016/j.solener.2009.06.007.
- Gonzalez-Trevizo, M.E., Martinez-Torres, K.E., Armendariz-Lopez, J.F., Santamouris, M., Bojorquez-Morales, G., Luna-Leon, A. (2021). Research trends on environmental, energy and vulnerability impacts of Urban Heat Islands: An overview. Energy Build 246, 111051. https://doi.org/10.1016/j.enbuild.2021.111051.
- Gough, W.A. (2008). Theoretical considerations of day-to-day temperature variability applied to Toronto and Calgary, Canada data. Theor Appl Climatol 94. https://doi.org/10.1007/s00704-007-0346-9.
- Gough, W.A., Hu, Y. (2016). Day-to-day temperature variability for four urban areas in China. Urban Clim 17. https://doi.org/10.1016/j.uclim.2016.06.002.
- Gough, W.A., Leung, A.C.W. (2022). Do Airports Have Their Own Climate? Meteorology 1, 171–182. https://doi.org/10.3390/meteorology1020012.
- Gough, W.A., Shi, B. (2020). Impact of Coastalization on Day-to-Day Temperature Variability along China’s East Coast. J Coast Res 36. https://doi.org/10.2112/JCOASTRES-D-19-00167.1.
- He, B.-J., Wang, J., Zhu, J., Qi, J. (2022). Beating the urban heat: Situation, background, impacts and the way forward in China. Renewable and Sustainable Energy Reviews 161, 112350. https://doi.org/10.1016/j.rser.2022.112350.
- Hussain, Md., Mahmud, I. (2019). pyMannKendall: a python package for non parametric Mann Kendall family of trend tests. J Open Source Softw 4, 1556. https://doi.org/10.21105/joss.01556
- Karl, T.R., Kukla, G., Gavin, J. (1987). Recent Temperature Changes during Overcast and Clear Skies in the United States. Journal of Climate and Applied Meteorology 26, 698–711. https://doi.org/10.1175/1520-0450(1987)026<0698:RTCDOA>2.0.CO;2.
- Karl, T.R., Kukla, G., Gavin, J. (1984). Decreasing Diurnal Temperature Range in the United States and Canada from 1941 through 1980. Journal of Climate and Applied Meteorology 23, 1489–1504. https://doi.org/10.1175/1520-0450(1984)023<1489:DDTRIT>2.0.CO;2.
- Klaić, Z.B., Nitis, T., Kos, I., Moussiopoulos, N. (2002). Modification of the local winds due to hypothetical urbanization of the Zagreb surroundings. Meteorology and Atmospheric Physics 79, 1–12. https://doi.org/10.1007/s703-002-8225-z.
- Kolokotroni, M., Giannitsaris, I., Watkins, R. (2006). The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Solar Energy 80, 383–392. https://doi.org/10.1016/j.solener.2005.03.010.
- L. El Zein, A. (2015). The Effect of Greenhouse Gases on Earth’s Temperature. International Journal of Environmental Monitoring and Analysis 3, 74. https://doi.org/10.11648/j.ijema.20150302.16.
- Lemoine-Rodríguez, R., Inostroza, L., Zepp, H. (2022). Does urban climate follow urban form? Analysing intraurban LST trajectories versus urban form trends in 3 cities with different background climates. Science of The Total Environment 830, 154570. https://doi.org/10.1016/j.scitotenv.2022.154570.
- Li, J., Song, C., Cao, L., Zhu, F., Meng, X., Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens Environ 115, 3249–3263. https://doi.org/10.1016/j.rse.2011.07.008.
- Liang, Z., Wu, S., Wang, Y., Wei, F., Huang, J., Shen, J., Li, S. (2020). The relationship between urban form and heat island intensity along the urban development gradients. Science of The Total Environment 708, 135011. https://doi.org/10.1016/j.scitotenv.2019.135011.
- Likso, T. (2003). Inhomogeneities in temperature time series in Croatia. Hrvatski Meteorološki Časopis 38, 3–9.
- Liu, J., Feng, X., Gu, X., Zhang, J., Slater, L.J., Kong, D. (2022). Detection and Attribution of Human Influence on the Global Diurnal Temperature Range Decline. Geophys Res Lett 49. https://doi.org/10.1029/2021GL097155.
- Louiza, H., Zéroual, A., Djamel, H. (2015). Impact of the transport on the urban heat island. International Journal for Traffic and Transport Engineering 5, 252–263. https://doi.org/10.7708/ijtte.2015.5(3).03.
- Lu, Y., Yue, W., He, T., Shan, Z. (2022). Urban form centrality and thermal environment: An empirical study of Chinese megacities. Sustain Cities Soc 83, 103955. https://doi.org/10.1016/j.scs.2022.103955.
- Meng, Q., Hu, D., Zhang, Y., Chen, X., Zhang, L., Wang, Z. (2022). Do industrial parks generate intra-heat island effects in cities? New evidence, quantitative methods, and contributing factors from a spatiotemporal analysis of top steel plants in China. Environmental Pollution 292, 118383. https://doi.org/10.1016/j.envpol.2021.118383.
- Milošević, D., Trbić, G., Savić, S., Popov, T., Ivanišević, M., Marković, M., Ostojić, M., Dunjić, J., Fekete, R., Garić, B. (2022=. Biometeorological conditions during hot summer days in diverse urban environments of Banja Luka (Bosnia and Herzegovina). Geographica Pannonica 26, 29–45. https://doi.org/10.5937/gp26-35456.
- Moberg, A., Jones, P.D., Barriendos, M., Bergström, H., Camuffo, D., Cocheo, C., Davies, T.D., Demarée, G., Martin-Vide, J., Maugeri, M., Rodriguez, R., Verhoeve, T. (2000). Day-to-day temperature variability trends in 160- to 275-year-long European instrumental records. Journal of Geophysical Research: Atmospheres 105, 22849–22868. https://doi.org/10.1029/2000JD900300.
- Nimac, I., Herceg-Bulić, I., Cindrić Kalin, K., Perčec Tadić, M. (2021). Changes in extreme air temperatures in the mid-sized European city situated on southern base of a mountain (Zagreb, Croatia). Theor Appl Climatol 146, 429–441. https://doi.org/10.1007/s00704-021-03689-8.
- Nitis, T., Klaić B., Z., Moussiopoulos, N. (2005). Effects of Topography on the Urban Heat Island, in: 10th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes. Sissi, Crete, Greece.
- Nuruzzaman, Md. (2015). Urban Heat Island: Causes, Effects and Mitigation Measures – A Review. International Journal of Environmental Monitoring and Analysis 3. https://doi.org/10.11648/j.ijema.20150302.15.
- Oke, T.R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society 108. https://doi.org/10.1002/qj.49710845502.
- Pandžić, K. (1986=. Factor analysis of temperature field on a relatively small area. Idojaras 90, 321–331.
- Pandžić, K., Kisegi, M. (1990=. Principal Component analysis of a local temperature field within the global circulation. Theor Appl Climatol 41, 177–200. https://doi.org/10.1007/BF00866450.
- Park, H.S., Joh, M. (2005). Climate Change due to the Gradual Increase in Atmospheric CO<sub>2</sub>: A Climate System Model Sensitivity Study. Key Eng Mater 277–279, 595–600. https://doi.org/10.4028/www.scientific.net/KEM.277-279.595.
- Peterson, T.C. (2003). Assessment of Urban Versus Rural In Situ Surface Temperatures in the Contiguous United States: No Difference Found. J Clim 16, 2941–2959. https://doi.org/10.1175/1520-0442(2003)016<2941:AOUVRI>2.0.CO;2.
- Qu, M., Wan, J., Hao, X. (2014). Analysis of diurnal air temperature range change in the continental United States. Weather Clim Extrem 4, 86–95. https://doi.org/10.1016/j.wace.2014.05.002.
- Raupach, M., Fraser, P. (2011=. Climate and greenhouse gases, in: Climate Changes: ….
- Santamouris, M. (2014). Cooling the cities – A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy 103. https://doi.org/10.1016/j.solener.2012.07.003.
- Santamouris, M., Paraponiaris, K., Mihalakakou, G. (2007). Estimating the ecological footprint of the heat island effect over Athens, Greece. Clim Change 80, 265–276. https://doi.org/10.1007/s10584-006-9128-0.
- Seletković, A., Kičić, M., Ančić, M., Kolić, J., Pernar, R. (2023). The Urban Heat Island Analysis for the City of Zagreb in the Period 2013–2022 Utilizing Landsat 8 Satellite Imagery. Sustainability 15, 3963. https://doi.org/10.3390/su15053963.
- Seletković, I., Potočić, N., Ugarković, D., Jazbec, A., Pernar, R., Seletković, A., Benko, M. (2009). Climate and relief properties influence crown condition of common beech (Fagus sylvatica L.) on the Medvednica massif. Period Biol 111.
- Stocker, T.F., D. Qin, G.-K., Plattner, M.T., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., 2013. IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC, Cambridge University Press. Cambridge, United Kingdom and New York, NY, USA.
- Takebayashi, H., Senoo, M. (2018). Analysis of the relationship between urban size and heat island intensity using WRF model. Urban Clim 24, 287–298. https://doi.org/10.1016/j.uclim.2016.12.003.
- Tam, B.Y., Gough, W.A. (2012). Examining past temperature variability in Moosonee, Thunder Bay, and Toronto, Ontario, Canada through a day-to-day variability framework. Theor Appl Climatol 110. https://doi.org/10.1007/s00704-012-0622-1.
- Tam, B.Y., Gough, W.A., Mohsin, T. (2015). The impact of urbanization and the urban heat island effect on day to day temperature variation. Urban Clim 12. https://doi.org/10.1016/j.uclim.2014.12.004.
- Vose, R.S., Easterling, D.R., Gleason, B. (2005). Maximum and minimum temperature trends for the globe: An update through 2004. Geophys Res Lett 32, L23822. https://doi.org/10.1029/2005GL024379.
- Wild, M., Ohmura, A., Makowski, K. (2007). Impact of global dimming and brightening on global warming. Geophys Res Lett 34, L04702. https://doi.org/10.1029/2006GL028031.
- Zoldoš, M., Jurkovic, J. (2016). Fog event climatology for Zagreb Airport. Hrvatski Meteoroloski Casopis 51, 13–26.