Optimisation of a high-water reservoir – a case study on flood protection for the town of Železniki using flood reservoir Pod Sušo
- Authors: Igor Mlakar, Matjaž Knapič, Gašper Rak
- Citation: Acta hydrotechnica, vol. 37, no. 66, pp. 79-102, 2024. https://doi.org/10.15292/acta.hydro.2024.05
- Abstract: Flood control reservoirs are one of the most effective flood prevention measures, as, in addition to improving flood safety, they can also incorporate environmental objectives to improve the ecological status of water bodies and riparian areas. Due to the lengthy processes of planning and coordinating project solutions with the requirements of all relevant stakeholders and experts, new flood events and their hydrological analyses have led to changes in the design discharges during this time, which require modifications and adaptations to the operating rules of flood control reservoirs. Using the Pod Sušo retention reservoir above Železniki in Slovenia as an example, this article presents the results of investigations aimed at optimising the reservoir’s operation based on new hydrological data, which show significantly higher peak discharge values above Q100 compared to the values used in previous planning phases. The model used to simulate different operating modes for flood events up to 500-year return period discharges is presented. The impact of each mode for different return periods of flood events was analysed using a full 2D hydraulic model of the downstream area, with damage assessed for each scenario based on flood depths and land use. The results indicate that the proposed operation of the flood retention basin can have a more favourable impact on downstream flood conditions and reduce material damage.
- Keywords: Flood hazard, mitigation measures, high-water reservoir, operation rules, flood damage assessment.
- Full text: a37im.pdf
- References:
- Afzal, M.A., Ali, S., Nazeer, A., et al. (2022). Flood Inundation Modeling by Integrating HEC–RAS and Satellite Imagery: A Case Study of the Indus River Basin. Water 14:2984. https://doi.org/10.3390/w14192984
- ARSO (2023). Atlas okolja. Ministrstvo za okolje, podnebje in energijo, Agencija Republike Slovenije za okolje. Dostopno na: https://gis.arso.gov.si/atlasokolja/ (Pridobljeno 29. 12. 2023).
- Bharath, A., Shivapur, A.V., Hiremath, C.G., Maddamsetty, R. (2021). Dam break analysis using HEC-RAS and HEC-GeoRAS: A case study of Hidkal dam, Karnataka state, India. Environmental Challenges 5:100401. https://doi.org/10.1016/j.envc.2021.100401.
- Burshtynska, K., Kokhan, S., Pfeifer, N., et al. (2023). Hydrological Modeling for Determining Flooded Land from Unmanned Aerial Vehicle Images—Case Study at the Dniester River. Remote Sensing 15:1071. https://doi.org/10.3390/rs15041071.
- DWA (2005). Deutsche Vereingung fur Wasserwirtschaft, Abwasser und Abfall. Pravilnik DWA-M 522, Hennef, 81 str.
- El Bilali, A., Taleb, A., Boutahri, I. (2021). Application of HEC-RAS and HEC-LifeSim models for flood risk assessment. Journal of Applied Water Engineering and Research 9:336–351. https://doi.org/10.1080/23249676.2021.1908183.
- English Nature (2002). Wetlands, land use change and Flood Management. The Environment Agency, the Department for Environment, Food and Rural Affairs and the Forestry Commission: 23 str.
- HEK, projektiranje in svetovanje, Doroteja Starec (2021). Celovita hidrološko–hidravlična analiza porečja Selške, Poljanske in skupne Sore na območju občin Žiri, Gorenja vas – Poljane, Škofja Loka in Medvode s predlogom celovitih ukrepov za zmanjševanje poplavne H/18, Hidrološki del – obnova hidroloških izhodišč Poljanske, Selške in skupne Sore.
- Hemert, H. et al. (2013). The International Levee Handbook. Ciria, London, 1332 str.
- Hidroinštitut, inštitut za hidravlične raziskave (2022). Hidravlična modelna raziskava pregrade pod Sušo.
- Hill, C. J. (2010). The role of floodplains on the propagation of land management signals in the Vale of York. Durham, Durham University: 274 str.
- HSE-Invest, družba za inženiring in izgradnjo energetskih objektov d.o.o. (2022). Protipoplavna ureditev Selške Sore II. Faza. PZI – projektna dokumentacija za izvedbo gradnje. Št. projekta 8015/2021.
- Huizinga, J., Moel, H. de, Szewczyk, W. (2017). Global flood depth-damage functions : methodology and the database with guidelines, Publications Office. https://data.europa.eu/doi/10.2760/16510.
- IZVO-R, projektiranje in inženiring d.o.o. (2010). Idejni projekt za ureditev Selške Sore za zagotavljanja poplavne varnosti širšega območja Železnikov.
- IZVO-R, projektiranje in inženiring d.o.o. (2012). Izdelava kart poplavne nevarnosti in kart razredov poplavne nevarnosti za izbrana območja občine Železniki.
- Karim, I.R., Hassan, Z.F., Abdullah, H.H. and Alwan, I.A. (2021). 2D HEC–RAS Modeling of Flood Wave Propagation in a Semi–Arid Area Due to Dam Overtopping Failure. Civil Engineering Journal, 7(9): 1501–1514.
- Lim, M., Minola Ginting, B., Senjaya, T., Kieswanti, C. (2024). Comparison of 1D, coupled 1D–2D, and 2D shallow water numerical modeling for dam-break flow analysis of Way-Ela dam, Indonesia. Acta hydrotechnica, 37(66): 27–50. https://doi.org/10.15292/acta.hydro.2024.02.
- MNVP (2017). Načrt zmanjševanja poplavne ogroženosti, Ministrstvo za naravne vire in prostor. 262 str.
- Namara, W.G., Damisse, T.A., Tufa, F.G. (2022). Application of HEC-RAS and HEC-GeoRAS model for Flood Inundation Mapping, the case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Model Earth Syst Environ 8: 1449–1460. https://doi.org/10.1007/s40808-021-01166-9
- Penca, B., Korošec, I., Lešnik, Z., Lovrinčević, S., Štrekelj, S., Lamovšek, M. (1999). Zavarovanje pred nevarnostjo naravnih in drugih nesreč. Ujma 13: 295–298.
- Pravilnik o metodologiji za določanje območij, ogroženih zaradi poplav in z njimi povezane erozije celinskih voda in morja, ter o načinu razvrščanja zemljišč v razrede ogroženosti. Uradni list RS, št. 60/07.
- Rak, G., Kozelj, D., Steinman, F. (2016). The impact of floodplain land use on flood wave propagation. Natural Hazards 83: 425–443. https://doi.org/10.1007/s11069-016-2322-0.
- Rak, G., Grobljar, S., Steinman, F. (2018). Modeliranje poplavljanja urbanih površin. Acta hydrotechnica, 31(54): 21–33. https://doi.org/10.15292/acta.hydro.2018.02.
- Riha, J. (2013). Safety problems of small embankment dams in the Czech Republic. Acta hydrotechnica, 26(44): 15–25.
- Sholtes, J. S., Doyle, M.W. (2011). Effect of Channel Restoration on Flood Wave Attenuation. Journal of Hydraulic Engineering 137(2): 196–208.
- Urzică, A., Mihu-Pintilie, A., Stoleriu, C.C., Cîmpianu, C.I., Huţanu, E., Pricop, C.I. and Grozavu, A. (2020). Using 2D HEC–RAS Modeling and Embankment Dam Break Scenario for Assessing the Flood Control Capacity of a Multi–Reservoir System (NE Romania). Water, 13(57). https://doi.org/10.3390/w13010057.
- USACE (2018). Benchmarking of the HEC–RAS Two–Dimensional Hydraulic Modeling Capabilities, Davis, CA. 137 str.
- USACE (2023a). HEC–RAS 2D Modeling User's manual. Davis, CA, 171 str.
- USACE (2023b). HEC–RAS Hydraulic Reference Manual. Davis, CA, 477 str.