Idrijca and Soča/Isonzo river discharges estimation for modelling mercury pollution
- Authors: Mateja Škerjanec, Nataša Atanasova, Dušan Žagar, Gorazd Novak
- Citation: Acta hydrotechnica, vol. 37, no. 67, pp. 153-171, 2024. https://doi.org/10.15292/acta.hydro.2024.09
- Abstract: River discharges play an important role in understanding mercury fate in contaminated catchments. While hydrological and hydraulic models are commonly used to calculate discharges, their complexity and computational costs often pose challenges. This study evaluates the fit of the statistical curve and one of the machine learning methods, namely model trees, and explores their performance in predicting downstream river discharges based on upstream discharge measurements. The model trees method performs better, particularly with high discharges, which transport the vast majority of mercury downstream. The resulting relationships can be used as an input to various models assessing the impact of mercury pollution from the former mine in Idrija and the climate change on mercury transport in the river systems of the Idrijca and Soča/Isonzo rivers. The application of such models will improve our understanding of mercury cycling in the contaminated catchment and in the Gulf of Trieste’s coastal environment.
- Keywords: Discharge, mercury, Idrijca, Soča river, curve fitting, model trees.
- Full text: a37ms.pdf
- References:
- Ambrose, R. B., Wool, T. A. (2017). WASP8 Stream Transport – Model Theory and User's Guide. US EPA, Washington DC, 67 pp. https://www.epa.gov/sites/default/files/2018-05/documents/stream-transport-user-guide.pdf.
- Behnood, A., Behnood, V., Gharehveran, M.M., Alyamac, K.E. (2017). Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm, Constr. Build. Mater. 142, 199–207. https://doi.org/10.1016/j.conbuildmat.2017.03.061.
- Bertola M, Blöschl G, Bohac M. et al. (2023). Megafloods in Europe can be anticipated from observations in hydrologically similar catchments. Nat. Geosci. 16, 982–988. https://doi.org/10.1038/s41561-023-01300-5.
- Bratko, I. (1989). “Machine learning” in Gilhooly, K.J., Ed., Human and Machine Problem Solving. Pelnum Press, New York and London, 265-287. https://doi.org/10.1007/978-1-4684-8015-3.
- Carroll, R.W.H., Warwick, J.J., Heim, K. J., Bonzongo, J. C., Miller, J. R., Lyons W. B. (2000). Simulation of mercury transport and fate in the Carson River, Nevada. Ecol Model 125 (2-3), pp. 255-278. https://doi.org/10.1016/S0304-3800(99)00186-6.
- Carroll, R.W.H., Warwick, J.J. (2001). Uncertainty analysis of the Carson River mercury transport model. Ecol Model 137, pp. 211-224. https://doi.org/10.1016/S0304-3800(00)00438-5.
- Carroll, R.W.H., Warwick, J.J. (2016). Modeling the Highly Dynamic Loading of Mercury Species in the Carson River and Lahontan Reservoir System, Nevada. JAWRA, pp. 1207-1222. https://doi.org/10.1111/1752-1688.12448.
- Gosar, M., Žibret, G. (2011). Mercury contents in the vertical profiles through alluvial sediments as a reflection of mining in Idrija (Slovenia), Journal of Geochemical Exploration 110 (2), 81-91. https://doi.org/10.1016/j.gexplo.2011.03.008.
- Hall, M.A. (1999). Correlation Based Feature Subset Selection for Machine Learning. PhD Thesis, University of Waikato, Hamilton, New Zealand, 198 pp.
- HEC-RAS model: https://www.hec.usace.army.mil/ software/hec-ras/.
- Jordan, M.I., Mitchell, T.M. (2015). Machine learning: Trends, perspectives, and prospects, Science 349, 255-260. https://doi.org/10.1126/science.aaa8415.
- Lun D, Viglione A, Bertola M, Komma J, Parajka J, Valent P, Blöschl G (2021). Characteristics and process controls of statistical flood moments in Europe – a data-based analysis, Hydrol. Earth Syst. Sci. 25, 5535–5560. https://doi.org/10.5194/hess-25-5535-2021.
- Maity, R., Srivastava, A., Sarkar, S., Khan, M.I. (2024). Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning. Applied Computing and Geosciences 24, 100206. https://doi.org/10.1016/j.acags.2024.100206.
- Mathworks Matlab 2024. PDF Documentation for Curve Fitting Toolbox, Curve Fitting Toolbox ™ User's Guide.
- Quinlan, J.R. (1992). Learning with Continuous Classes. Proceedings of 5th Australian Joint Conference on Artificial Intelligence, World Scientific, Singapore, 343-348.
- Širca, A., Rajar, R., Harris, R.C., Horvat, M. (1999a). Mercury Transport and Fate in the Gulf of Trieste (Northern Adriatic) – a Two-Dimensional Modelling Approach, Environmental modelling & software 14, 645–655. https://doi.org/10.1016/S1364-8152(99)00006-7.
- Širca, A., Horvat, M., Rajar, R., Covelli, S., Žagar, D., Faganeli, J. (1999b). Estimation of mercury mass balance in the Gulf of Trieste, Acta Adriat. 40, 75–85.
- Tripathy, K.P., Mishra, A.K. (2024). Deep learning in hydrology and water resources disciplines: concepts, methods, applications, and research directions. J. Hydrol. 628, 130458. https://doi.org/10.1016/j.jhydrol.2023.130458.
- Wade, A. J., Durand, P., Beaujouan, V., Wessel, W. W., Raat, K. J., Whitehead, P. G., Butterfield, D., Rankinen, K., Lepisto, A. (2002). A nitrogen model for European catchments: INCA, new model structure & equations. Hydrol. Earth System Sci. 6, 559–582. https://doi.org/10.5194/hess-6-559-2002.
- Wang, Y., Witten, I.H. (1997). Induction of model trees for predicting continuous classes. Poster papers of the 9th European Conference on Machine Learning, University of Economics, Faculty of Informatics and Statistics, Prague.
- Whitehead, P. G., Wilson, E. J., Butterfield, D. (1998a). A semi-distributed integrated nitrogen model for multiple source in catchments INCA.: Part I – model structure and process equations. Sci. Total Environ. 210/211, 547–558.
- Whitehead, P. G., Wilson, E. J., Butterfield, D., Seed, K. (1998b) A semi-distributed integrated flow and nitrogen model for multiple source assessment in catchments, INCA. Part II, Application to large River Basins in South Wales and Eastern England. Sci. Total Environ. 210/211, 559–583.
- Witten, I.H., Frank, E., Hall, M.A. (2011). Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Publishers, Burlington, MA, USA. https://doi.org/10.1016/B978-0-12-374856-0.00018-3.
- Zhong, S., Zhang, K., Bagheri, M., Burken, J.G., Gu, A., Li, B., Ma, X., Marrone, B.L., Ren, Z.J., Schrier, J., Shi, W., Tan, H., Wang, T., Wang, X., Wong, B.M:, Xiao, X., Yu, X., Zhu, J.J., Zhang, H. (2021). Machine Learning: New Ideas and Tools in Environmental Science and Engineering, Environ. Sci. Technol. 55, 12741-12754.
- https://doi.org/10.1021/acs.est.1c01339.
- Zhu, S., Zhang, Z., Žagar, D. (2018). Mercury transport and fate models in aquatic systems: A review and synthesis. Sci. Total Environ. 639, 538-549. https://doi.org/10.1016/j.scitotenv.2018.04.397.
- Žagar, D., Knap, A.,Warwick, J.J., Rajar, R., Horvat, M., Cetina, M. (2006). Modelling of mercury transport and transformation processes in the Idrijca and Soca river system. Sci. Total Environ. 368 (1), 149–163. https://doi.org/10.1016/j.scitotenv.2005.09.068.