Use of the particle tracking method for modelling the transport and deceasing of Escherichia coli in the sea
- Authors: Anja Lešek, Dušan Žagar
- Citation: Acta hydrotechnica, vol. 31, no. 55, pp. 119-142, 2018. https://doi.org/10.15292/acta.hydro.2018.08
- Abstract: We discuss modeling of the transport and decease of bacteria Escherichia coli in marine environments. We calculated the spatially variable decease coefficient of E. coli from the extrapolated measurement data on environmental parameters in accordance with Mancini's equation for bacteria stemming from the Rižana River and entering into the computational domain – the eastern part of the Koper Bay. Using pre-computed circulation data and the modified particle-tracking model Nafta3D we performed two-day simulations of an instantaneous and a continuous release from a single source. We analyzed locations of two particle types: free E. coli (ECF) and E. coli bound to suspended solids (ECA). We then analyzed the ECA and ECF activity decrease with a newly developed decease model, applying a first-order kinetics equation. In the given conditions a vast majority of ECA remained in the second basin of the Port of Koper and sank to the bottom layers. The decease time of 90% of the ECA (T90) was about 48 hours. The ECF remained closer to the surface; they moved more quickly and for the most part abandoned the second basin. The determined T90 was 6 and 10 hours in instantaneous and continuous release, respectively.
- Keywords: model, E. coli, Mancini equation, first order kinetics, transport, activity, environmental parameters, Koper Bay.
- Full text: a31al.pdf
- References:
- Auer, M. T., Niehaus S. L. (1993). Modeling fecal coliform bacteria. 1: Field and laboratory determination of loss kinetics. Water Res. 27: 693–701. https://doi.org/10.1016/0043-1354(93)90179-L.
- Betancourt, F., Palacio, A., Rodriguez, A. (2005). Effects of the mass transfer process in oil spill. American Journal of Applied Sciences 2(5): 939–946. https://doi.org/10.3844/ajassp.2005.939.946.
- Bougeard, M., Le Saux, J-C., Pérenne, N., Baffaut, C., Robin, M., Pommepuy, M. (2011). Modeling of Escherichia coli fluxes on a catchment and the impact on coastal water and shellfish quality. Journal of the American Water Resources Association (JAWRA), 47(2): 1‒17. https://doi.org/10.1111/j.1752‐1688.2011.00520.x.
- Bitton, G. (1998). Formula handbook for environmental engineers and scientists. Gainesville, Florida: 51‒56.
- Chan, Y. (2010). Field and laboratory studies of E. coli decay rate at a coastal beach with reference to storm events. Magistrska naloga. Hong Kong, Univerza v Hong Kongu: 182 str. https://doi.org/10.1016/j.jher.2014.08.002.
- Davies, C. M., Long, J. A. H., Donald, M., Ashbolt, N. J. (1995). Survival of fecal microorganisms in marine and fresh-water sediments. Appl. Environ. Microbiol. 61(5): 1888–1896. https://doi.org/0099-2240/95/$04.0010.
- De Marchis, M., Freni, G., Napoli, E. (2013). Modelling of E. coli distribution in coastal areas subjected to combined sewer overflows. Water Sci. Technol. 68 (5): 1123‒1136. https://doi.org/10.2166/wst.2013.353.
- Desmarais, T. R., Solo-Gabriele H. M., C. J. Palmer. (2002). Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Appl. Environ. Microbiol. 68(3): 1165–1172. https://doi.org/10.1128/AEM.68.3.1165-1172.2002.
- Eadie, B. J., Schwab, D. J., Johengen, T. H., Lavrentyev, P. J., Miller, G. S., Holland, R. E., Leshkevich, G. A., Lansing M. B., Morehead, N. R., Robbins J. A., Hawley N., Edgington D. N., Van Hoo, P. L. (2002). Particle transport, nutrient cycling, and algal community structure associated with a major winter-spring sediment resuspension event in southern Lake Michigan. J. Great Lakes Res. 28: 324–337. https://doi.org/10.1016/S0380-1330(02)70588-1.
- Escherichia coli (2017). http://www.redorbit.com/reference/escherichia_coli/ (pridobljeno 13. 9. 2017).
- Galuf, S. (2005). Simulacija razlitja nafte v Tržaškem zalivu. Diplomska naloga. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Oddelek za gradbeništvo, Hidrotehnična smer: 69 str.
- Garcia-Barcina, J. M., Oteiza, M., Sota, A. D. L. (2002). Modelling the faecal coliform concentrations in the Bilbao estuary. Hydrobiologia 475–476: 213–219. https://doi.org/10.1023/A:1020317309634.
- Gruber, A. K., Shelton, D. R., Pachepsky, Y. A. (2005). Effect of manure on Escherichia coli attachment to soil. J. Environ. Qual. 34: 2086–2090. https://doi.org/10.2134/jeq2005.0039.
- Hipsey, M. R., Brookes, J. D., Regel, R. H., Antenucci, J. P., Burch, M. D. (2006). In situ evidence for the association of total coliforms and Escherichia coli with suspended inorganic particles in an Australian reservoir. Water Air Soil Pollut. 170: 191–209. https://doi.org/10.1007/s11270-006-3010-6.
- Huang, G., Falconer, R., Lin, B. (2017). Integrated hydro-bacterial modelling for predicting bathing water quality. Estuarine, Coastal and Shelf Science 188: 145‒155. https://doi.org/10.1016/J.ECSS.2017.01.018.
- Jarc, G. (2014). Dejavniki, ki vplivajo na preživetje Escherichie coli v morskem okolju. Diplomska naloga. Ljubljana, Univerza v Ljubljani. 68 str.
- Katalog plaž. (2014). http://www.obala.net/katalog/plaze (pridobljeno 17. 9. 2017).
- Lehr, W., Robert, J., Evans, M., Simecek-Beatty, D., Overstreet, R. (2002). Revisions of the ADIOS oil spill model. Environmental Modelling and Software 17: 191–199. https://doi.org/10.1016/S1364-8152(01)00064-0.
- Lešek, A. (2018). Uporaba metode sledenja delcev za modeliranje transporta in odmiranja Escherichie coli v morju. Magistrska naloga. Ljubljana, Univerza v Ljubljani. 131 str.
- Li, J., McLandsborough, L. (1999). The effects of the surface charge and hydrophobicity of Escherichia coli on its adhesion to beef muscle. Int. J. Food Microbiol. 53(2–3): 185–193. https://doi.org/10.1016/S0168-1605(99)00159-2.
- Lytle, D. A., Rice, E. W., Johnson, C. H., Fox, K. R. (1999). Electrophoretic mobilities of Escherichia coli O157: H7 and wild-type Escherichia coli strains. Appl. Environ. Microbiol. 65(7): 3222–3225.
- Malačič, V., Čermelj, B., Bajt O., Ramšak, A., Petelin, B., Žagar, D., Vodopivec, M., Forte, J. (2009). Cirkulacija in okoljske razmere v Koprskem zalivu in Luki Koper. Fazno poročilo 3. Naročnik: Luka Koper d.d., izvajalec: Nacionalni inštitut za biologijo, Morska biološka postaja, Poročila MBP št. 113, 97 str.
- Mancini, J. L. (1978). Numerical estimates of coliform mortality rates under various conditions. Journal of Water Pollution Control Federation 50(11): 2477‒2484.
- Martin, Y., Troussellier, M., Bonnefont, J-L. (1998). Adaptative responses of E. coli to marine environmental stresses: a modelling approach based on viability and dormancy concepts. Oceanologica Acta, 21(6): 951‒964. https://doi.org/10.1016/S0399-1784(99)80018-8.
- Meteorološki in ekološki podatki za Koper. Urne vrednosti globalnega sončnega sevanja. 2017. http://193.95.233.105/econova1/Html/Urne_02.aspx?mesto=Koper (pridobljeno 15. 12. 2017).
- Ogorelec, B., Mišič, M., Faganeli, J., Stegnar, P., Vrišer, B., Vukovič, A. (1987). The recent sediment of the Bay of Koper (Northern Adriatic). Geologija 30: 87‒121. 551.8(262.3-17)
- Ostanek Jurina, T., Šoško, H., Žagar, D. (2014). Primerjava modelov širjenja nafte na morju po metodah trajektorij in koncentracij – Comparison of trajectory and concentration methods in oil spill modelling at sea. Acta hydrotechnica 27/47 (2014): 43‒56.
- Outtara, N.K., Brauwere, A., Billen, G., Servais, P. (2013). Modelling faecal contamination in the Scheldt drainage network. Journal of Marine Systems 121: 77‒88. https://doi.org/10.1016/j.jmarsys.2012.05.004.
- Palazón A., López, I., Aragonés, L., Villacampa, Y., Navarro-González, F. (2017). Modelling of Escherichia coli concentrations in bathing water at microtidal coasts. Science of the Total Environment 593‒594: 173‒181. https://doi.org/10.1016/j.scitotenv.2017.03.161.
- Rajar, R., Četina, M. (1997). Hydrodynamic and water quality modelling: An experience. Ecological Modelling 101: 195–207. https://doi.org/10.1016/s0304-3800(97)00047-1.
- Rajar, R., Žagar, D., Širca, A., Horvat, M. (1998). Two- and three-dimensional modelling of mercury transport in the Gulf of Trieste. V: BREBBIA, C. A. (ur.). Second International Conference on Environmental Coastal Regions held in Cancun. Mexico, Environmental coastal regions, Environmental studies. Boston, Southampton, WIT Press, 1998: 289‒300. https://doi.org/10.2495/CENV980271.
- Reed, M., Johansen, Ø., Brandvik, P.J., Daling, P., Lewis, A., Fiocco, R., Mackay, D., Prentki, R. (1999). Oil spill modeling towards the close of the 20th century: Overview of the state of the art. Spill Science and Technology Bulletin 5(1): 3–16. https://doi.org/10.1016/s1353-2561(98)00029-2.
- Roper, M. M., Marshall K. (1979). Effects of salinity on sedimentation and of participates on survival of bacteria in estuarine habitats, Geomicrobiol. J. 1(2): 103–116. https://doi.org/10.1080/01490457909377727.
- Rozen, Y., Belkin S. (2001). Survival of enteric bacteria in seawater. FEMS Microbiology Reviews 25: 513–529. https://doi.org/10.1111/j.1574-6976.2001.tb00589.x.
- Sinton, L. W. (2005). Biotic and abiotic effects in cceans and health: pathogens in the marine environment, edited by S. Belkin and R. R. Colwell: 69–92.
- Soczka Mandac, R., Žagar, D. (2018). Spatial distribution of suspended solids during short-term high river discharge in the Bay of Koper, northern Adriatic Sea. Mediterranean Marine Science 19(1): 36‒47. http://dx.doi.org/10.12681/mms.2141.
- Soczka Mandac, R., Harpha Sea, d.o.o. (2013). Meritve Secchijeve globine v Tržaškem zalivu. Osebna komunikacija (4. 7. 2014).
- Širca, A. (1992). Modeliranje transporta polutantov po metodi sledenja delcev. Magistrska naloga. Ljubljana, Univerza v Ljubljani, FAGG (samozaložba A. Širca): 87 str.
- Šoško, H. (2012). Modeliranje širjenja nafte v morskem okolju po metodi trajektorij. Diplomska naloga. Ljubljana, UL FGG (samozaložba Šoško, H.): 59 str.
- Terzić, E. (2015). Modeliranje zadrževalnega časa vode v Tržaškem zalivu. Diplomska naloga. Ljubljana, UL FGG, Odd. za gradbeništvo, Konstrukcijska smer, 67 str.
- Thupaki, P., Phanikumar, M. S., Schwab D. J., Nevers, M. B., Whitman, R. L. (2013). Evaluating the role of sediment-bacteria interactions on Escherichia coli concentrations at beaches in southern Lake Michigan. Journal of Geophysical Research: Oceans 118: 7049–7065. https://doi.org/10.1002/2013JC008919.
- Wang, X. H., Pinardi, N., Malačič, V. (2007). Sediment transport and resuspension due to combined motion of wave and current in the northern Adriatic Sea during a Bora event in January 2001: A numerical modelling study. Continental Shelf Research 27(5): 613‒633. https://doi.org/10.1016/j.csr.2006.10.008.
- Zhongfu G., Whitman, R.L., Nevers, M.B., Phanikumar, M.S., Byappanahalli, M.N. (2012). Nearshore hydrodynamics as loading and forcing factors for Escherichia coli contamination at an embayed beach. Limnol. Oceanogr., 57(1): 362–381. https://doi.org/10.4319/lo.2012.57.1.0362.
- Žagar, D. (1994). Tridimenzijski model za simulacijo širjenja nafte. Magistrska naloga. Ljubljana, Univerza v Ljubljani, Fakulteta za arhitekturo, gradbeništvo in geodezijo, Oddelek za gradbeništvo, Hidrotehnična smer: 63 str.
- Žagar, D. (1999). Razvoj in aplikacija tridimenzionalnega modela za simulacijo transporta in procesov pretvorb živega srebra v Tržaškem zalivu. Doktorska disertacija. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Oddelek za gradbeništvo, Hidrotehnična smer: 101 str.
- Žagar, D., Četina, M. (2011). Končno poročilo o izdelavi strokovne naloge NAFTA3D. Poročilo UL FGG. Ljubljana, Katedra za mehaniko tekočin: 22 str.
- Žagar, D., Ramšak, V., Ličer, M., Petelin, B., Malačič, V. (2012). Uporaba numeričnih modelov ob razlitjih nafte na morju. Ujma 26: 168–174.