Use of the particle tracking method for modelling the transport and deceasing of Escherichia coli in the sea
Uporaba metode sledenja delcev za modeliranje transporta in odmiranja Escherichie coli v morju
- Avtorji: Anja Lešek, Dušan Žagar
- Citat: Acta hydrotechnica, vol. 31, no. 55, pp. 119-142, 2018. https://doi.org/10.15292/acta.hydro.2018.08
- Povzetek: Obravnavamo modeliranje transporta in odmiranja bakterij Escherichia coli v morju. Iz ekstrapoliranih meritev okoljskih parametrov smo po Mancinijevi enačbi izračunali krajevno spremenljivi koeficient umrljivosti E. coli, ki vtekajo z Rižano v računsko območje, vzhodni del Koprskega zaliva. S predhodno izračunanimi hitrostnimi polji smo z modificiranim modelom sledenja delcev Nafta3D opravili dvodnevne simulacije izpusta delcev iz enega izvora in analizirali lokacije dveh vrst delcev – prostih bakterij (ECF) in bakterij, pričvrščenih na suspendirane delce (ECA). Nato smo po razpadni enačbi prvega reda in z izračunanimi koeficienti umrljivosti analizirali zmanjševanje aktivnosti ECA in ECF z novim modelom odmiranja E. coli. V danih razmerah velika večina ECA v 48 urah ostane na območju drugega bazena Luke Koper in potone v sloje vode ob dnu. Čas, ko odmre 90 % ECA (T90), znaša približno 48 ur. ECF se v manjših globinah premikajo hitreje in drugi bazen Luke Koper pretežno zapustijo. T90 je pri hipnem izpustu enak 6 ur, pri kontinuirnem pa se podaljša na 10 ur, približno za čas izpusta.
- Ključne besede: model, E. coli, Mancinijeva enačba, razpadna enačba prvega reda, transport, aktivnost, okoljski dejavniki, Koprski zaliv
- Polno besedilo: a31al.pdf
- Viri:
- Auer, M. T., Niehaus S. L. (1993). Modeling fecal coliform bacteria. 1: Field and laboratory determination of loss kinetics. Water Res. 27: 693–701. https://doi.org/10.1016/0043-1354(93)90179-L.
- Betancourt, F., Palacio, A., Rodriguez, A. (2005). Effects of the mass transfer process in oil spill. American Journal of Applied Sciences 2(5): 939–946. https://doi.org/10.3844/ajassp.2005.939.946.
- Bougeard, M., Le Saux, J-C., Pérenne, N., Baffaut, C., Robin, M., Pommepuy, M. (2011). Modeling of Escherichia coli fluxes on a catchment and the impact on coastal water and shellfish quality. Journal of the American Water Resources Association (JAWRA), 47(2): 1‒17. https://doi.org/10.1111/j.1752‐1688.2011.00520.x.
- Bitton, G. (1998). Formula handbook for environmental engineers and scientists. Gainesville, Florida: 51‒56.
- Chan, Y. (2010). Field and laboratory studies of E. coli decay rate at a coastal beach with reference to storm events. Magistrska naloga. Hong Kong, Univerza v Hong Kongu: 182 str. https://doi.org/10.1016/j.jher.2014.08.002.
- Davies, C. M., Long, J. A. H., Donald, M., Ashbolt, N. J. (1995). Survival of fecal microorganisms in marine and fresh-water sediments. Appl. Environ. Microbiol. 61(5): 1888–1896. https://doi.org/0099-2240/95/$04.0010.
- De Marchis, M., Freni, G., Napoli, E. (2013). Modelling of E. coli distribution in coastal areas subjected to combined sewer overflows. Water Sci. Technol. 68 (5): 1123‒1136. https://doi.org/10.2166/wst.2013.353.
- Desmarais, T. R., Solo-Gabriele H. M., C. J. Palmer. (2002). Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Appl. Environ. Microbiol. 68(3): 1165–1172. https://doi.org/10.1128/AEM.68.3.1165-1172.2002.
- Eadie, B. J., Schwab, D. J., Johengen, T. H., Lavrentyev, P. J., Miller, G. S., Holland, R. E., Leshkevich, G. A., Lansing M. B., Morehead, N. R., Robbins J. A., Hawley N., Edgington D. N., Van Hoo, P. L. (2002). Particle transport, nutrient cycling, and algal community structure associated with a major winter-spring sediment resuspension event in southern Lake Michigan. J. Great Lakes Res. 28: 324–337. https://doi.org/10.1016/S0380-1330(02)70588-1.
- Escherichia coli (2017). http://www.redorbit.com/reference/escherichia_coli/ (pridobljeno 13. 9. 2017).
- Galuf, S. (2005). Simulacija razlitja nafte v Tržaškem zalivu. Diplomska naloga. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Oddelek za gradbeništvo, Hidrotehnična smer: 69 str.
- Garcia-Barcina, J. M., Oteiza, M., Sota, A. D. L. (2002). Modelling the faecal coliform concentrations in the Bilbao estuary. Hydrobiologia 475–476: 213–219. https://doi.org/10.1023/A:1020317309634.
- Gruber, A. K., Shelton, D. R., Pachepsky, Y. A. (2005). Effect of manure on Escherichia coli attachment to soil. J. Environ. Qual. 34: 2086–2090. https://doi.org/10.2134/jeq2005.0039.
- Hipsey, M. R., Brookes, J. D., Regel, R. H., Antenucci, J. P., Burch, M. D. (2006). In situ evidence for the association of total coliforms and Escherichia coli with suspended inorganic particles in an Australian reservoir. Water Air Soil Pollut. 170: 191–209. https://doi.org/10.1007/s11270-006-3010-6.
- Huang, G., Falconer, R., Lin, B. (2017). Integrated hydro-bacterial modelling for predicting bathing water quality. Estuarine, Coastal and Shelf Science 188: 145‒155. https://doi.org/10.1016/J.ECSS.2017.01.018.
- Jarc, G. (2014). Dejavniki, ki vplivajo na preživetje Escherichie coli v morskem okolju. Diplomska naloga. Ljubljana, Univerza v Ljubljani. 68 str.
- Katalog plaž. (2014). http://www.obala.net/katalog/plaze (pridobljeno 17. 9. 2017).
- Lehr, W., Robert, J., Evans, M., Simecek-Beatty, D., Overstreet, R. (2002). Revisions of the ADIOS oil spill model. Environmental Modelling and Software 17: 191–199. https://doi.org/10.1016/S1364-8152(01)00064-0.
- Lešek, A. (2018). Uporaba metode sledenja delcev za modeliranje transporta in odmiranja Escherichie coli v morju. Magistrska naloga. Ljubljana, Univerza v Ljubljani. 131 str.
- Li, J., McLandsborough, L. (1999). The effects of the surface charge and hydrophobicity of Escherichia coli on its adhesion to beef muscle. Int. J. Food Microbiol. 53(2–3): 185–193. https://doi.org/10.1016/S0168-1605(99)00159-2.
- Lytle, D. A., Rice, E. W., Johnson, C. H., Fox, K. R. (1999). Electrophoretic mobilities of Escherichia coli O157: H7 and wild-type Escherichia coli strains. Appl. Environ. Microbiol. 65(7): 3222–3225.
- Malačič, V., Čermelj, B., Bajt O., Ramšak, A., Petelin, B., Žagar, D., Vodopivec, M., Forte, J. (2009). Cirkulacija in okoljske razmere v Koprskem zalivu in Luki Koper. Fazno poročilo 3. Naročnik: Luka Koper d.d., izvajalec: Nacionalni inštitut za biologijo, Morska biološka postaja, Poročila MBP št. 113, 97 str.
- Mancini, J. L. (1978). Numerical estimates of coliform mortality rates under various conditions. Journal of Water Pollution Control Federation 50(11): 2477‒2484.
- Martin, Y., Troussellier, M., Bonnefont, J-L. (1998). Adaptative responses of E. coli to marine environmental stresses: a modelling approach based on viability and dormancy concepts. Oceanologica Acta, 21(6): 951‒964. https://doi.org/10.1016/S0399-1784(99)80018-8.
- Meteorološki in ekološki podatki za Koper. Urne vrednosti globalnega sončnega sevanja. 2017. http://193.95.233.105/econova1/Html/Urne_02.aspx?mesto=Koper (pridobljeno 15. 12. 2017).
- Ogorelec, B., Mišič, M., Faganeli, J., Stegnar, P., Vrišer, B., Vukovič, A. (1987). The recent sediment of the Bay of Koper (Northern Adriatic). Geologija 30: 87‒121. 551.8(262.3-17)
- Ostanek Jurina, T., Šoško, H., Žagar, D. (2014). Primerjava modelov širjenja nafte na morju po metodah trajektorij in koncentracij – Comparison of trajectory and concentration methods in oil spill modelling at sea. Acta hydrotechnica 27/47 (2014): 43‒56.
- Outtara, N.K., Brauwere, A., Billen, G., Servais, P. (2013). Modelling faecal contamination in the Scheldt drainage network. Journal of Marine Systems 121: 77‒88. https://doi.org/10.1016/j.jmarsys.2012.05.004.
- Palazón A., López, I., Aragonés, L., Villacampa, Y., Navarro-González, F. (2017). Modelling of Escherichia coli concentrations in bathing water at microtidal coasts. Science of the Total Environment 593‒594: 173‒181. https://doi.org/10.1016/j.scitotenv.2017.03.161.
- Rajar, R., Četina, M. (1997). Hydrodynamic and water quality modelling: An experience. Ecological Modelling 101: 195–207. https://doi.org/10.1016/s0304-3800(97)00047-1.
- Rajar, R., Žagar, D., Širca, A., Horvat, M. (1998). Two- and three-dimensional modelling of mercury transport in the Gulf of Trieste. V: BREBBIA, C. A. (ur.). Second International Conference on Environmental Coastal Regions held in Cancun. Mexico, Environmental coastal regions, Environmental studies. Boston, Southampton, WIT Press, 1998: 289‒300. https://doi.org/10.2495/CENV980271.
- Reed, M., Johansen, Ø., Brandvik, P.J., Daling, P., Lewis, A., Fiocco, R., Mackay, D., Prentki, R. (1999). Oil spill modeling towards the close of the 20th century: Overview of the state of the art. Spill Science and Technology Bulletin 5(1): 3–16. https://doi.org/10.1016/s1353-2561(98)00029-2.
- Roper, M. M., Marshall K. (1979). Effects of salinity on sedimentation and of participates on survival of bacteria in estuarine habitats, Geomicrobiol. J. 1(2): 103–116. https://doi.org/10.1080/01490457909377727.
- Rozen, Y., Belkin S. (2001). Survival of enteric bacteria in seawater. FEMS Microbiology Reviews 25: 513–529. https://doi.org/10.1111/j.1574-6976.2001.tb00589.x.
- Sinton, L. W. (2005). Biotic and abiotic effects in cceans and health: pathogens in the marine environment, edited by S. Belkin and R. R. Colwell: 69–92.
- Soczka Mandac, R., Žagar, D. (2018). Spatial distribution of suspended solids during short-term high river discharge in the Bay of Koper, northern Adriatic Sea. Mediterranean Marine Science 19(1): 36‒47. http://dx.doi.org/10.12681/mms.2141.
- Soczka Mandac, R., Harpha Sea, d.o.o. (2013). Meritve Secchijeve globine v Tržaškem zalivu. Osebna komunikacija (4. 7. 2014).
- Širca, A. (1992). Modeliranje transporta polutantov po metodi sledenja delcev. Magistrska naloga. Ljubljana, Univerza v Ljubljani, FAGG (samozaložba A. Širca): 87 str.
- Šoško, H. (2012). Modeliranje širjenja nafte v morskem okolju po metodi trajektorij. Diplomska naloga. Ljubljana, UL FGG (samozaložba Šoško, H.): 59 str.
- Terzić, E. (2015). Modeliranje zadrževalnega časa vode v Tržaškem zalivu. Diplomska naloga. Ljubljana, UL FGG, Odd. za gradbeništvo, Konstrukcijska smer, 67 str.
- Thupaki, P., Phanikumar, M. S., Schwab D. J., Nevers, M. B., Whitman, R. L. (2013). Evaluating the role of sediment-bacteria interactions on Escherichia coli concentrations at beaches in southern Lake Michigan. Journal of Geophysical Research: Oceans 118: 7049–7065. https://doi.org/10.1002/2013JC008919.
- Wang, X. H., Pinardi, N., Malačič, V. (2007). Sediment transport and resuspension due to combined motion of wave and current in the northern Adriatic Sea during a Bora event in January 2001: A numerical modelling study. Continental Shelf Research 27(5): 613‒633. https://doi.org/10.1016/j.csr.2006.10.008.
- Zhongfu G., Whitman, R.L., Nevers, M.B., Phanikumar, M.S., Byappanahalli, M.N. (2012). Nearshore hydrodynamics as loading and forcing factors for Escherichia coli contamination at an embayed beach. Limnol. Oceanogr., 57(1): 362–381. https://doi.org/10.4319/lo.2012.57.1.0362.
- Žagar, D. (1994). Tridimenzijski model za simulacijo širjenja nafte. Magistrska naloga. Ljubljana, Univerza v Ljubljani, Fakulteta za arhitekturo, gradbeništvo in geodezijo, Oddelek za gradbeništvo, Hidrotehnična smer: 63 str.
- Žagar, D. (1999). Razvoj in aplikacija tridimenzionalnega modela za simulacijo transporta in procesov pretvorb živega srebra v Tržaškem zalivu. Doktorska disertacija. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Oddelek za gradbeništvo, Hidrotehnična smer: 101 str.
- Žagar, D., Četina, M. (2011). Končno poročilo o izdelavi strokovne naloge NAFTA3D. Poročilo UL FGG. Ljubljana, Katedra za mehaniko tekočin: 22 str.
- Žagar, D., Ramšak, V., Ličer, M., Petelin, B., Malačič, V. (2012). Uporaba numeričnih modelov ob razlitjih nafte na morju. Ujma 26: 168–174.