Hydrological modelling of the karst Ljubljanica River catchment using lumped conceptual model
- Authors: Cenk Sezen, Nejc Bezak, Mojca Šraj
- Citation: Acta hydrotechnica, vol. 31, no. 55, pp. 87-100, 2018. https://doi.org/10.15292/acta.hydro.2018.06
- Abstract: Modelling rainfall runoff is important for several human activities. For example, rainfall runoff models are needed for water resource planning and water system design. In this regard, the daily runoff was modelled using the Genie Rural, a 4-parameter Journalier (GR4J), Genie Rural, a 6-parameter Journalier (GR6J), and the CemaNeige GR6J lumped conceptual models that were developed by the IRSTEA Hydrology Group. The main difference among the tested models is in the complexity and processes that are considered in the various model versions. As a case study, the non-homogeneous mostly karst Ljubljanica River catchment down to the Moste discharge gauging station was selected. Models were evaluated using various efficiency criteria. For example, base flow index (BFI) was calculated for the results of all tested models and observed discharges in order to compare low flow simulation performance. Based on the presented results we can conclude that in case of the non-homogeneous and karst Ljubljanica catchment the CemaNeige GR6J yields better modelling results compared to the GR4J and GR6J models. Compared to the GR6J and GR4J model versions, the CemaNeige CR6J also includes the snow module and improved methodology for the low-flow simulations that are also included in the GR6J model version.
- Keywords: lumped conceptual model, rainfall-runoff modelling, Ljubljanica River, calibration, validation.
- Full text: a31cs.pdf
- References:
- Allen, R.G., Pereira, R.S., Raes, D., Smith M. (1998). Crop evapotranspiration – guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56, FAO, Rome: 246 p.
- Anctil, F., Michel, C., Perrin, C., Andréassian, V. (2004). A soil moisture index as an auxiliary ANN input for stream flow forecasting. Journal of Hydrology 286(1-4), 155–167. https://doi.org/10.1016/j.jhydrol.2003.09.006.
- Bezak, N., Šraj, M., Rusjan, S., Kogoj, M., Vidmar, A., Sečnik, M., Brilly, M., Mikoš, M. (2013). Comparison between two adjacent experimental torrential watersheds: Kuzlovec and Mačkov graben. Acta hydrotechnica 26(45), 85–97.
- Bezak, N., Grigillo, D., Urbančič, T., Mikoš, M., Petrovič, D., Rusjan, S. (2017). Geomorphic response detection and quantification in a steep forested torrent. Geomorphology 291, 33–44. https://doi.org/10.1016/j.geomorph.2016.06.034.
- Bezak, N., Šraj, M., Rusjan, S., Mikoš, M. (2018). Impact of the Rainfall Duration and Temporal Rainfall Distribution Defined Using the Huff Curves on the Hydraulic Flood Modelling Results. Geosciences 8, 69. https://doi.org/10.3390/geosciences8020069.
- Coron, L., Thirel, G., Delaigue, O., Perrin, C., Andréassian, V. (2017). The suite of lumped GR hydrological models in an R package. Environmental Modelling & Software 94, 166–171. https://doi.org/10.1016/j.envsoft.2017.05.002.
- Coron, L., Perrin, C., Delaigue, O., Thirel, G. Michel, C. (2018). airGR: Suite of GR Hydrological Models for Precipitation-Runoff Modelling. R package version 1.0.10.11. URL: https://webgr.irstea.fr/en/airGR/
- Daliakopoulos, I. N., Tsanis, I. K. (2016). Comparison of an artificial neural network and a conceptual rainfall–runoff model in the simulation of ephemeral streamflow. Hydrological Sciences Journal 61(15), 2763–2774. https://doi.org/10.1080/02626667.2016.1154151.
- Demirel, M. C., Venancio, A., Kahya, E. (2009). Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Advances in Engineering Software 40(7), 467–473. https://doi.org/10.1016/j.advengsoft.2008.08.002.
- De Vos, N. J., Rientjes, T. H. M. (2007). Multi-objective performance comparison of an artificial neural network and a conceptual rainfall—runoff model. Hydrological Sciences Journal 52(3), 397–413. https://doi.org/10.1623/hysj.52.3.397.
- Gupta, H. V., Kling, H., Yilmaz, K. K., Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, Journal of Hydrology 377(1-2), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003.
- Gustard, A., Demuth, S. (2009) (Eds) Manual on Low-flow Estimation and Prediction. Operational Hydrology Report No. 50, WMO-No. 1029, 136 p.
- Habič, P., Kos, V. (1987). Reference Karst, in The Encyclopedia of Slovenia.
- Humphrey, G. B., Gibbs, M. S., Dandy, G. C., Maier, H. R. (2016). A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network. Journal of Hydrology 540, 623–640. https://doi.org/10.1016/j.jhydrol.2016.06.026.
- Kovačec, M., Šraj, M. (2017). Application of the SWAT model for hydrological modelling. Acta hydrotechnica 30(52), 1–13.
- Kovačič, G., Ravbar, N. (2016). Characterisation of selected karst springs in Slovenia by means of a time series analysis. In Karst without Boundaries, Editors: Stevanović, Z., Krešič, N., Kukurić, N. CRC Press.
- Kurtulus, B., Razack, M. (2007). Evaluation of the ability of an artificial neural network model to simulate the input-output responses of a large karstic aquifer: the La Rochefoucauld aquifer (Charente, France). Hydrogeology Journal 15(2), 241–254. https://doi.org/10.1007/s10040-006-0077-5.
- Le Moine, N. (2008). Le bassin versant de surface vu par le souterrain: une voie d’amélioration des performance et du réalisme des modéles pluie-débit? Ph.D. thesis. Université Pierre et Marie Curie (Paris), Cemagref (Antony), 324 p.
- Maček, U., Bezak, N., Šraj, M. (2018), Reference evapotranspiration changes in Slovenia, Europe. Agricultural and Forest Meteorology 260-261, 183–192. https://doi.org/10.1016/j.agrformet.2018.06.014.
- Perrin, C., Michel, C., Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology 279(1-4), 275–289. https://doi.org/10.1016/S0022-1694(03)00225-7.
- Pestotnik, S., Hojnik, T., Šraj, M. (2012). Analysis of the possibility of using the distributed two-dimensional model Flo-2D for hydrological modelling. Acta hydrotechnica 25(43), 85–103.
- Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T. and Andreassian, V. (2011). A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, Journal of Hydrology 411, 66–76. https://doi.org/10.1016/j.jhydrol.2011.09.034.
- R Development Core Team. (2015). R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. URL http://www.R-project.org/.
- Rimmer, A., Salingar, Y. (2006). Modelling precipitation-streamflow processes in karst basin: The case of the Jordan River sources, Israel. Journal of Hydrology 331(3-4), 524–542. https://doi.org/10.1016/j.jhydrol.2006.06.003.
- Oudin, F., Hervieu, F., Michel, C., Perrin, C., Andreassian, V., Antcil, F., Loumagne, C. (2005). Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 2-Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. Journal of Hydrology 303(1-4), 290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026.
- Sedki, A., Ouazar, D., El Mazoudi, E. (2009). Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting. Expert Systems with Applications 36(3), 4523–4527. https://doi.org/10.1016/j.eswa.2008.05.024.
- Šraj, M., Bezak, N., Rusjan, S., Mikoš, M. (2016). Review of hydrological studies contributing to the advancement of hydrological sciences in Slovenia. Acta hydrotechnica 29(50), 47–71.
- Šraj, M., Dirnbek, L., Brilly, M. (2010). The influence of effective rainfall on modelled runoff hydrograph. Journal of Hydrology and Hydromechanics 58(1), 3–14. https://doi.org/10.2478/v10098-010-0001-5.
- Valéry, A., Andréassian, V., Perrin, C. (2014a). ‘As simple as possible but not simpler’: What is useful in a temperature-based snow-accounting routine? Part 1–Comparison of six snow accounting routines on 380 catchments. Journal of Hydrology 517, 1166–1175. https://doi.org/10.1016/j.jhydrol.2014.04.059.
- Valéry, A., Andréassian, V., Perrin, C. (2014b). ‘As simple as possible but not simpler’: What is useful in a temperature-based snow-accounting routine? Part 2–Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments. Journal of Hydrology 517, 1176–1187. https://doi.org/10.1016/j.jhydrol.2014.04.058.