Hydrological modelling of the karst Ljubljanica River catchment using lumped conceptual model
Hidrološko modeliranje kraškega porečja Ljubljanice z uporabo enovitega konceptualnega modela
- Avtorji: Cenk Sezen, Nejc Bezak, Mojca Šraj
- Citat: Acta hydrotechnica, vol. 31, no. 55, pp. 87-100, 2018. https://doi.org/10.15292/acta.hydro.2018.06
- Povzetek: Modeliranje površinskega odtoka kot posledice padavin je pomembno za različne človeške dejavnosti. Tako lahko hidrološke modele uporabimo za načrtovanje uporabe vodnih virov in vodnogospodarskih sistemov. V prispevku je prikazana uporaba različnih konceptualnih modelov (Génie Rural à 4 paramètres Journalier (GR4J), Génie Rural à 6 paramètres Journalier (GR6J) in CemaNeige GR6J), ki so bili razviti v sklopu hidrološkega dela raziskovalnega inštituta IRSTEA. Glavna razlika med modeli je v kompleksnosti ter obravnavanih procesih. Kot študijo primera smo izbrali nehomogeno, večinoma kraško porečje reke Ljubljanice do vodomerne postaje Moste. Rezultate uporabljenih modelov smo primerjali z uporabo različnih kriterijev ustreznosti. Kot enega izmed kriterijev smo uporabili tudi indeks baznega odtoka (BFI), ki smo ga izračunali za modelirane in izmerjene vrednosti pretokov. Na podlagi predstavljenih rezultatov lahko zaključimo, da je za nehomogeno in kraško porečje različica modela CemaNeige GR6J izkazala boljše rezultate v primerjavi z GR4J in GR6J. Ta različica modela (CemaNeige GR6J) v primerjavi z različico GR4J vključuje tudi snežni modul in izboljšano metodologijo za modeliranje nizkih pretokov, ki je že vključena tudi v verzijo GR6J.
- Ključne besede: enovit konceptualni model, model padavine–odtok, Ljubljanica, umerjanje, validacija
- Polno besedilo: a31cs.pdf
- Viri:
- Allen, R.G., Pereira, R.S., Raes, D., Smith M. (1998). Crop evapotranspiration – guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56, FAO, Rome: 246 p.
- Anctil, F., Michel, C., Perrin, C., Andréassian, V. (2004). A soil moisture index as an auxiliary ANN input for stream flow forecasting. Journal of Hydrology 286(1-4), 155–167. https://doi.org/10.1016/j.jhydrol.2003.09.006.
- Bezak, N., Šraj, M., Rusjan, S., Kogoj, M., Vidmar, A., Sečnik, M., Brilly, M., Mikoš, M. (2013). Comparison between two adjacent experimental torrential watersheds: Kuzlovec and Mačkov graben. Acta hydrotechnica 26(45), 85–97.
- Bezak, N., Grigillo, D., Urbančič, T., Mikoš, M., Petrovič, D., Rusjan, S. (2017). Geomorphic response detection and quantification in a steep forested torrent. Geomorphology 291, 33–44. https://doi.org/10.1016/j.geomorph.2016.06.034.
- Bezak, N., Šraj, M., Rusjan, S., Mikoš, M. (2018). Impact of the Rainfall Duration and Temporal Rainfall Distribution Defined Using the Huff Curves on the Hydraulic Flood Modelling Results. Geosciences 8, 69. https://doi.org/10.3390/geosciences8020069.
- Coron, L., Thirel, G., Delaigue, O., Perrin, C., Andréassian, V. (2017). The suite of lumped GR hydrological models in an R package. Environmental Modelling & Software 94, 166–171. https://doi.org/10.1016/j.envsoft.2017.05.002.
- Coron, L., Perrin, C., Delaigue, O., Thirel, G. Michel, C. (2018). airGR: Suite of GR Hydrological Models for Precipitation-Runoff Modelling. R package version 1.0.10.11. URL: https://webgr.irstea.fr/en/airGR/
- Daliakopoulos, I. N., Tsanis, I. K. (2016). Comparison of an artificial neural network and a conceptual rainfall–runoff model in the simulation of ephemeral streamflow. Hydrological Sciences Journal 61(15), 2763–2774. https://doi.org/10.1080/02626667.2016.1154151.
- Demirel, M. C., Venancio, A., Kahya, E. (2009). Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Advances in Engineering Software 40(7), 467–473. https://doi.org/10.1016/j.advengsoft.2008.08.002.
- De Vos, N. J., Rientjes, T. H. M. (2007). Multi-objective performance comparison of an artificial neural network and a conceptual rainfall—runoff model. Hydrological Sciences Journal 52(3), 397–413. https://doi.org/10.1623/hysj.52.3.397.
- Gupta, H. V., Kling, H., Yilmaz, K. K., Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, Journal of Hydrology 377(1-2), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003.
- Gustard, A., Demuth, S. (2009) (Eds) Manual on Low-flow Estimation and Prediction. Operational Hydrology Report No. 50, WMO-No. 1029, 136 p.
- Habič, P., Kos, V. (1987). Reference Karst, in The Encyclopedia of Slovenia.
- Humphrey, G. B., Gibbs, M. S., Dandy, G. C., Maier, H. R. (2016). A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network. Journal of Hydrology 540, 623–640. https://doi.org/10.1016/j.jhydrol.2016.06.026.
- Kovačec, M., Šraj, M. (2017). Application of the SWAT model for hydrological modelling. Acta hydrotechnica 30(52), 1–13.
- Kovačič, G., Ravbar, N. (2016). Characterisation of selected karst springs in Slovenia by means of a time series analysis. In Karst without Boundaries, Editors: Stevanović, Z., Krešič, N., Kukurić, N. CRC Press.
- Kurtulus, B., Razack, M. (2007). Evaluation of the ability of an artificial neural network model to simulate the input-output responses of a large karstic aquifer: the La Rochefoucauld aquifer (Charente, France). Hydrogeology Journal 15(2), 241–254. https://doi.org/10.1007/s10040-006-0077-5.
- Le Moine, N. (2008). Le bassin versant de surface vu par le souterrain: une voie d’amélioration des performance et du réalisme des modéles pluie-débit? Ph.D. thesis. Université Pierre et Marie Curie (Paris), Cemagref (Antony), 324 p.
- Maček, U., Bezak, N., Šraj, M. (2018), Reference evapotranspiration changes in Slovenia, Europe. Agricultural and Forest Meteorology 260-261, 183–192. https://doi.org/10.1016/j.agrformet.2018.06.014.
- Perrin, C., Michel, C., Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology 279(1-4), 275–289. https://doi.org/10.1016/S0022-1694(03)00225-7.
- Pestotnik, S., Hojnik, T., Šraj, M. (2012). Analysis of the possibility of using the distributed two-dimensional model Flo-2D for hydrological modelling. Acta hydrotechnica 25(43), 85–103.
- Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T. and Andreassian, V. (2011). A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, Journal of Hydrology 411, 66–76. https://doi.org/10.1016/j.jhydrol.2011.09.034.
- R Development Core Team. (2015). R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. URL http://www.R-project.org/.
- Rimmer, A., Salingar, Y. (2006). Modelling precipitation-streamflow processes in karst basin: The case of the Jordan River sources, Israel. Journal of Hydrology 331(3-4), 524–542. https://doi.org/10.1016/j.jhydrol.2006.06.003.
- Oudin, F., Hervieu, F., Michel, C., Perrin, C., Andreassian, V., Antcil, F., Loumagne, C. (2005). Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 2-Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. Journal of Hydrology 303(1-4), 290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026.
- Sedki, A., Ouazar, D., El Mazoudi, E. (2009). Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting. Expert Systems with Applications 36(3), 4523–4527. https://doi.org/10.1016/j.eswa.2008.05.024.
- Šraj, M., Bezak, N., Rusjan, S., Mikoš, M. (2016). Review of hydrological studies contributing to the advancement of hydrological sciences in Slovenia. Acta hydrotechnica 29(50), 47–71.
- Šraj, M., Dirnbek, L., Brilly, M. (2010). The influence of effective rainfall on modelled runoff hydrograph. Journal of Hydrology and Hydromechanics 58(1), 3–14. https://doi.org/10.2478/v10098-010-0001-5.
- Valéry, A., Andréassian, V., Perrin, C. (2014a). ‘As simple as possible but not simpler’: What is useful in a temperature-based snow-accounting routine? Part 1–Comparison of six snow accounting routines on 380 catchments. Journal of Hydrology 517, 1166–1175. https://doi.org/10.1016/j.jhydrol.2014.04.059.
- Valéry, A., Andréassian, V., Perrin, C. (2014b). ‘As simple as possible but not simpler’: What is useful in a temperature-based snow-accounting routine? Part 2–Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments. Journal of Hydrology 517, 1176–1187. https://doi.org/10.1016/j.jhydrol.2014.04.058.