Simulation of fluid sloshing in a tank using the SPH and Pendulum methods
- Authors: Vesna Vidmar, Gregor Petkovšek, Dušan Žagar
- Citation: Acta hydrotechnica, vol. 31, no. 54, pp. 51-65, 2018. https://doi.org/10.15292/acta.hydro.2018.04
- Abstract: We simulated liquid sloshing in a circular road tanker during two typical manoeuvres, namely steady-turn and lane change. A quasi-static pendulum, a modified dynamic pendulum with adjustable rod length, and the SPH (Smooth Particle Hydrodynamics) model Tis Isat were applied to simulate liquid oscillations. A simplified vehicle-tanker overturning model was developed and applied in order to determine the overturning threshold for the first manoeuvre. The agreement of liquid oscillations between the applied methods was better in the second manoeuvre, while the maximum inclination of the liquid gravity centre was successfully simulated in both cases. Both dynamic methods, the SPH and the dynamic pendulum, show a significantly lower overturning threshold, while all methods show similar overturning behaviour for a vehicle with liquid cargo. The threshold computed using the SPH model is slightly higher than with the dynamic pendulum due to wall-particle and particle-particle interactions. The results and comparisons confirm the suitability of the SPH method for simulating sloshing in road tankers and also show the method’s advantages: realistic description of the non-linear free surface in real-time, along with a consideration of mixing and friction processes within the fluid.
- Keywords: SPH method, pendulum, fluid oscillations, closed domain, liquid cargo, overturning threshold.
- Full text: a31vv.pdf
- References:
- Abramson, H. N. (1966). The Dynamic Behavior of Liquids in Moving Containers. National Aeronautics and Space Administration, Washington.
- Aliabadi, S., Johnson, A., Abedi, J. (2003). Comparison of Finite Element and Pendulum Models for Simulation of Sloshing. Comput. Fluids 32, 535–545. https://doi.org/10.1016/S0045-7930(02)00006-3.
- Behr, M., Tezduyar, T. E. (1994). Finite Element Solution Strategies for Large-Scale Flow Simulations. Comput. Methods Appl. Mech. Eng. 112, 3–24. https://doi.org/10.1016/0045-7825(94)90016-7.
- Cao, X. Y., Ming, F. R., Zhang, A. M. (2014). Sloshing in a Rectangular Tank Based on SPH Simulation. Appl. Ocean Res. 47, 241–254. https://doi.org/10.1016/j.apor.2014.06.006.
- Casasanta, J. D. (2010). Rollover Stability Analysis of Commercial Semi-Tanker Trucks Utilizing a Trammel Pendulum Model to Simulate Fluid Sloshing. Available at: http://trid.trb.org/view.aspx?id=1221147#.VsV56HDmZUc.mendeley.
- Delorme, L. (2009). Sloshing Flows. Experimental Investigation and Numerical Simulations with Smoothed Particle Hydrodynamics. Technical University of Madrid (UPM).
- Džebo, E., Žagar, D., Četina, M., Petkovšek, G. (2013). Reducing the Computational Time of the Smoothed Particle Hydrodynamics Method with a Coupled 2-D/3-D Approach ‒ Skrajšanje računskega časa simulacij po metodi SPH z uporabo povezanega 2D/3D-modela (in Slovene). J. Mech. Eng. 59, 575–584. Available at: http://10.0.21.169/sv-jme.2013.944.
- Džebo, E., Žagar, D., Krzyk, M., Četina, M., Petkovšek, G. (2014). Different Ways of Defining Wall Shear in Smoothed Particle Hydrodynamics Simulations of a Dam-Break Wave. J. Hydraul. Res. 52, 453–464. https://doi.org/10.1080/00221686.2013.879611.
- Gingold, R. A., Monaghan, J. J. (1977). Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars. Mon. Not. R. Astron. Soc. 181, 375–389. https://doi.org/10.1093/mnras/181.3.375.
- Gomez-Gesteira, M., Rogers, B. D., Dalrymple, R. A., Crespo, A. J. C. (2010). State-of-the-Art of Classical SPH for Free-Surface Flows. J. Hydraul. Res. 48, 6–27. https://doi.org/10.1080/00221686.2010.9641242.
- Issermann, H. (1976). Overturning Limits of Articulated Vehicles with Solid and Liquid Loads, MIRA Trans. No. 22/76. England.
- Jena, D., Biswal, K .C. (2017). A Numerical Study of Violent Sloshing Problems with Modified MPS Method. J. Hydrodyn. Ser. B 29, 659–667. https://doi.org/10.1016/S1001-6058(16)60779-5.
- Jones, D.A., Belton, D. (2006). Smoothed Particle Hydrodynamics: Applications Within DSTO. Department of Defence, Australia. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.587.8046&rep=rep1&type=pdf.
- Kang, X., Rakheja, S., Stiharu, I. (2001). Effects of Tank Shape on the Roll Dynamic Response of a Partly Filled Tank Vehicle. Veh. Syst. Dyn. Available at: http://www.tandfonline.com/doi/abs/10.1076/vesd.35.2.75.2036#.VsV9sXXTouE.mendeley.
- Kolaei, A., Rakheja, S., Richard, M. J. (2015). Three-Dimensional Dynamic Liquid Slosh in Partially-Filled Horizontal Tanks Subject to Simultaneous Longitudinal and Lateral Excitations. Eur. J. Mech. / B Fluids 53, 251–263. https://doi.org/10.1016/j.euromechflu.2015.06.001.
- Kolaei, A., Rakheja, S., Richard, M. J. (2014). Range of Applicability of the Linear Fluid Slosh Theory for Predicting Transient Lateral Slosh and Roll Stability of Tank Vehicles. J. Sound Vib. 333, 263–282. https://doi.org/10.1016/J.JSV.2013.09.002.
- Liu, G. R., Liu, M. B. (2003). Smoothed Particle Hydrodinamics: a Meshfree Particle Method. World Scientific Publishing. Available at: http://www.worldscientific.com/worldscibooks/10.1142/5340.
- Lucy, L. B. (1977). A Numerical Approach to the Testing of the Fission Hypothesis. Astron. J. 82, 1013–1024.
- Martin, J. C., Moyce, W. J. (1952). An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane. Philos Trans Soc, A 244, London, 312–324.
- Modaressi-Tehrani, K., Rakheja, S., Sedaghati, R. (2006). Analysis of the Overturning Moment Caused by Transient Liquid Slosh Inside a Partly Filled Moving Tank. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 220, 289–301. https://doi.org/10.1243/09544070D01705.
- Molteni, D., Colagrossi, A. (2008). Oblique Impact of a Jet on a Plane Surface Solved by SPH: Suggestions to Improve the Results of the Pressure Profiles, in: 3rd ERCOFTAC SPHERIC Workshop on SPH Applications. 1–5.
- Monaghan, J. J. (1992). Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics, 543–574.
- Monaghan, J.J., Lattanzio, J.C. (1985). A Refined Particle Method for Astrophysical Problems. Astron. Astrophys. 149, 135–143.
- Okamoto, T., Kawahara, M. (1990). Two-Dimensional Sloshing Analysis by Lagrangian Finite Element Method. Int. J. Numer. Methods Fluids 11, 453–477. https://doi.org/10.1002/fld.1650110502.
- Petkovšek, G., Džebo, E., Četina, M., Žagar, D. (2010). Application of Non-Discrete Boundaries with Friction to Smoothed Particle Hydrodynamics. J. Mech. Eng. 56, 307–315.
- Rajar, R. (1972). Recherche theorique et experimentale sur la propagation des ondes de rupture de barrage dans une vallee naturelle. University Paul Sabatier.
- Rakheja, S., Ranganathan, R. (1993). Estimation of the Rollover Threshold of Heavy Vehicles Carrying Liquid Cargo: A Simplified Approach. Int. J. Heavy Veh. Syst. 1. https://doi.org/https://doi.org/10.1504/IJHVS.1993.054646.
- Ramaswamy, B., Kawahara, M., Nakayama, T. (1986). Lagrangian Finite Element Method for the Analysis of Two-Dimensional Sloshing Problems. Int. J. Numer. Methods Fluids 6, 659–670. https://doi.org/10.1002/fld.1650060907.
- Ranganathan, R., Rakheja, S., Sankar, S. (1993). Directional Response of a B-Train Vehicle Combination Carrying Liquid Cargo. J. Dyn. Syst. Meas. Control 115, 133–139. http://dx.doi.org/10.1115/1.2897388.
- Rattaya, J. V. (1965). Sloshing of Liquids in Axisymmetric Ellipsoidal Tanks, AIAA paper.
- Salem, M.I. (2000). Rollover Stability of Partially Filled Heavy-Duty Elliptical Tankers Using Trammel Pendulums to Simulate Fluid Sloshing. West Virginia University.
- Shao, J. R., Li, H. Q., Liu, G. R., Liu, M. B. (2012). An Improved SPH Method for Modeling Liquid Sloshing Dynamics. Comput. Struct. 100–101, 18–26. https://doi.org/10.1016/j.compstruc.2012.02.005.
- Strandberg, L. (1978). Lateral Stability of Road Tankers, VTI rapport. Sweden. Available at: https://trid.trb.org/view.aspx?id=74044.
- Verlet, L. (1967). Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 159, 98–103. https://doi.org/10.1103/PhysRev.159.98.
- Vidmar, V. (2012). Simulations of Fluid Movement in a Tank Using the SPH and Pendulum Methods ‒ Simulacija gibanja kapljevin v cisterni po metodi SPH in metodi nihala (in Slovenian). Fakulteta za gradbeništvo in geodezijo. Available at: http://drugg.fgg.uni-lj.si/3755/1/GRU_3217_Vidmar.pdf.
- Vorobyev, A., Kriventsev, V., Maschek, W. (2011). Simulation of Central Sloshing Experiments with Smoothed Particle Hydrodynamics (SPH) Method. Nucl. Eng. Des. 241, 3086–3096. https://doi.org/10.1016/j.nucengdes.2011.05.020.
- Wu, G. X., Ma, Q. W., Eatock Taylor, R. (1998). Numerical Simulation of Sloshing Waves in a 3D Tank Based on a Finite Element Method. Appl. Ocean Res. 20, 337–355. https://doi.org/10.1016/S0141-1187(98)00030-3 .