Optical granulometry of coarse aggregates and sediments
- Authors: Maja Matič, Nejc Bezak, Matjaž Mikoš
- Citation: Acta hydrotechnica, vol. 32, no. 56, pp. 59-71, 2019. https://doi.org/10.15292/acta.hydro.2019.05
- Abstract: In order to determine the granularity of the material, image analysis may be used instead of traditional methods such as sieving. Data on granulometry is important in the water management sector for several practical applications, such as calculation of sediment transport capacity in watercourses, design of hydraulic structures, or modeling of debris flows. The WipFrag and Basegrain programs were tested on the case study of the Belca rockfall and the Sava Dolinka River’s gravel bar near the village of Mojstrana. In both cases, multiple images were taken from different heights and sieve analysis was performed. The results of both programs were compared with the results of the sieving analysis. The results showed that WipFrag yielded more comparable results with the sieving analysis than Basegrain. WipFrag gave slightly better results in the case of the Belca rockfall than in the case of the river gravel bar. The Basegrain program, on the other hand, produced similarly comparable results in both case studies. In most cases, both programs underestimated the grain size compared to the results of the sieving analysis. In some cases, the relative differences were close to 100%. On the other hand, the selected statistical test did not show a statistically significant difference between the results of the sieving analysis and the results of the image analysis in both of the programs. Optimal image analysis results were obtained from images taken from the height of about 1.5-2 m, which means that we suggest that photos of aggregates, fluvial sediments, and erosion material should be taken from a height of approximately ten times the maximum grain size.
- Keywords: Analysis of digital images, WipFrag, Basegrain, sieve analysis, aggregate, sediments, determination of granularity.
- Full text: a32mm.pdf
- References:
- ASTM International (2014). C136/C136M-14 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. West Conshohocken, PA. Dostopno na: https://doi-org.nukweb.nuk.uni-lj.si/10.1520/C0136_C0136M-14
- Babaeian, M., Ataei, M., Sereshki, F., Sotoudeh, F., Mohammadi, S. (2018). A new framework for evaluation of rock fragmentation in open pit mines. Journal of Rock Mechanics and Geotechnical Engineering 12(2), 325–336. https://doi.org/10.1016/j.jrmge.2018.11.006.
- Basegrain (2019). Dostopno na: https://basement.ethz.ch/download/tools/basegrain.html (pridobljeno 31. 8. 2019).
- Bunte, K., R. Abt, S. (2001). Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel – and Cobble-Bed Streams for Analyses in Sediment Transport, Hydraulics, and Streambed Monitoring. General Technical Report RMRS-GTR-74. Fort Collins, CO: USA. Dept. of Agriculture, Forest Service, Rocky Mountain Research Station, str. 428. https://doi.org/10.2737/RMRS-GTR-74.
- Bunte, K., Abt, S.R., Potyondy, J.P., Swingle, K.W. (2009). Comparison of three pebble count protocols (EMAP, >PIBO, and SFT) in two mountain gravel-bed streams. JAWRA Journal of the American Water Resources Association 45, 1209–1227.
- Cislaghi, A., Chiaradia, E.A., Bischetti, G.B. (2016). A comparison between different methods for determining grain distribution in coarse channel beds. International Journal of Sediment Research 31(2), 97–107. https://doi.org/10.1016/j.ijsrc.2015.12.002.
- Detert, M., Weitbrecht, V. (2013). User guide to gravelometric image analysis by Basegrain. 8.
- Elahi, A. T., Hosseini, M. (2017). Analysis of blasted rocks fragmentation using digital image processing (case study: limestone quarry of Abyek Cement Company). International Journal of Geo-Engineering 8: 16.
- Fehr, R. (1987). Geschiebeanalysen in Gebirgsflüssen: Umrechnung und Vergleich von verschiedenen Analyseverfahren. Mitteilungen Nr. 92, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Switzerland. Dostopno na: https://ethz.ch/content/dam/ethz/special-interest/baug/vaw/vaw-dam/documents/das-institut/mitteilungen/1980-1989/092.pdf.
- Gilson Company. (2019). Dostopno na: https://www.globalgilson.com/gilson-testing-screen (pridobljeno 31. 8. 2019).
- Kostevc, M. (2018). Ocena ogroženosti naselja Belca pred drobirskim tokom. Unpublished diploma thesis. Univerza v Ljubljani, Biotehniška fakulteta, 62 p. (in Slovenian). Dostopno na: https://repozitorij.uni-lj.si/IzpisGradiva.php?id=103165&lang=slv.
- Langhammer, J., Lendzioch, T., Miřijovský, J., Hartvich, F. (2017). UAV-Based Optical Granulometry as Tool for Detecting Changes in Structure of Flood Depositions. Remote Sensing 9(3), 240. https://doi.org/10.3390/rs9030240.
- Lazar, A., Beguš, T., Vulić, M. (2018). Monitoring of the Belca Rockfall. Acta geotechnica Slovenica 15(2), 2–14. https://doi.org/10.18690/actageotechslov.15.2.2-15.2018
- Maerz, N. H., Palangio, T. C., Franklin, J. A. (1996). WipFrag image based granulometry system. V: Proceedings of the FRAGBLAST 5 Workshop on Measurement of Blast Fragmentation, Montreal, Quebec, Canada, 23-24 Aug., 1996, 91–99.
- Mann, H. B., Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18(1), 50–60.
- Matič, M. (2019). Primerjava dveh metod za analizo slik za določitev zrnavosti grobih agregatov in sedimentov. Unpublished master thesis. Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, 140 p. (in Slovenian). Dostopno na: https://repozitorij.uni-lj.si/IzpisGradiva.php?id=110383&lang=slv.
- Mikoš, M. (1989). Metode vrednotenja zrnavostnih združb plavin v naravnih vodotokih. Gradbeni vestnik 38(7-8), 158–165. Dostopno na: http://www.zveza-dgits.si/gradbeni-vestnik-7-8-1989.
- Mikoš, M. (2017). Rečni sedimenti in mineralni agregati v gradbeništvu. Gradbeni vestnik 66(12), 296–306. Dostopno na: http://www.zveza-dgits.si/gradbeni-vestnik-december-2017.
- Mikoš, M., Petkovšek, G., Štravs, L., Brilly, M. (2002a). Prodna bilanca povodja reke Koritnice – 1. Letna prodonosnost. Gradbeni vestnik 51(11), 316–321. Dostopno na: http://www.zveza-dgits.si/gradbeni-vestnik-11-2002.
- Mikoš, M., Petkovšek, G., Štravs, L., Brilly, M. (2002b). Prodna bilanca povodja reke Koritnice – 2. Morfološke spremembe. Gradbeni vestnik 51(12), 339–345. Dostopno na: http://www.zveza-dgits.si/gradbeni-vestnik-12-2002.
- Pintar, J. (1977). Metodološka zasnova analize povirij voda s primerjalno presojo primernosti površin za smučišča v povirju Pišnice. Ljubljana, Podjetje za urejanje hudournikov, LIZ inženiring, 94 str.
- Piton, G., Recking, A. (2015). Design of Sediment Traps with Open Check Dams. I: Hydraulic and Deposition Processes. Journal of Hydraulic Engineering 142(2), 04015045. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001048.
- Plečko, J. (2015). Analiza tedenske razporeditve padavin za izbrane padavinske postaje v Sloveniji. Unpublished diploma thesis. Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, 141 p. (in Slovenian). Dostopno na: https://repozitorij.uni-lj.si/IzpisGradiva.php?id=107957.
- Rüther, N., Huber, S., Spiller, S., Aberle, J. (2013). Verifying a photogrammetric method to quantify grain size distribution of developed armor layers. Proceedings of 2013 IAHR Congress, Tsinghua University, Beijing.
- Sereshki, F., Hoseini, S. M., Ataei, M. (2016). Blast fragmentation analysis using image processing. International Journal of Mining and Geo-Engineering 50(2), 211–218. https://doi.org/10.22059/ijmge.2016.59831.
- SIST EN 932-5:2012 (2012). Tests for general properties of aggregates – Part 5: Common equipment and calibration = Preskusi splošnih lastnosti agregatov – 5. del: Splošne zahteve za opremo in kalibracijo. Slovenski inštitut za standardizacijo.
- Sodnik, J. (2009). Matematično modeliranje drobirskih tokov in priprava podrobnih kart nevarnosti. Unpublished master thesis. Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, 218 p. (in Slovenian).
- Split-Desktop. (2019). Split-Desktop Software. Dostopno na: https://www.spliteng.com/products/split-desktop-software/ (pridobljeno 31. 8. 2019).
- Stähly, S., Friedrich, H., Detert, M. (2017). Size Ratio of Fluvial Grains’ Intermediate Axes Assessed by Image Processing and Square-Hole Sieving. Journal of Hydraulic Engineering 143(6). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001286.
- Sulaiman, M. S., Sinnakaudan, S. K., Ng, S. F., Strom, K. (2014). Application of automated grain sizing technique (AGS) for bed load samples at Rasil River: A case study for supply limited channel. Catena 121, 303–343. https://doi.org/10.1016/j.catena.2014.05.013
- WipWare (2019). Sampling and Analysis Guide. Dostopno na: http://wipware.com/products/WipFrag/ (pridobljeno 31. 8. 2019).
- Wolman, M. G. (1954). A method of sampling coarse river-bed material. EOS, Transactions American Geophysical Union 35, 951–956.
- Žabota, B., Jeršič, T., Kobal, M. (2018). Analiza skalnega podora Belca z uporabo brezpilotnega letalnika. V: Zbornik 29. Mišičevega vodarskega dneva, 95–100. Dostopno na: http://www.mvd20.com/LETO2018/R12.pdf.