Application of the Hargreaves method for calculating the potential evapotranspiration in the hydrological modelling
- Authors: Maja Koprivšek, Anja Vihar, Sašo Petan
- Citation: Acta hydrotechnica, vol. 34, no. 61, pp. 77-92, 2021. https://doi.org/10.15292/acta.hydro.2021.06
- Abstract: To improve the results of the Slovenian Environment Agency’s hydrological forecasting system, especially in the river basins with lower specific runoff (Pomurje) and during high water events following a long dry period, we decided to find a good method for calculating daily values of the potential evapotranspiration (PET). We were deciding between several temperature-based methods for the daily reference evapotranspiration (ET0) values calculation. For selected meteorological stations we calculated ET0 using three different methods and then compared them to the ET0 values calculated using the much more complex Penman-Monteith method. Among the tested temperature methods the results given by the Hargreaves method fitted best to the results of the Penman-Monteith method. The reason for this may lie in the fact that the Hargreaves method, besides the mean daily air temperature as other temperature-based methods, considers the daily temperature range as well. Afterwards, considering the ground cover factor, we calculated the PET values from the ET0 values and then applied them in the hydrological modelling. The model setups for the Sava, Soča, and Mura Rivers were reanalysed twice, considering firstly the climatologic monthly PET values that were already used in the hydrological forecasting system of the Slovenian Environment Agency for many years, and, secondly the daily PET values calculated according to the Hargreaves method and using hourly air temperature 2 m above the ground, originating from the short-term weather forecasting model ALADIN or the INCA/AT meteorological system. At all selected calculation points, the model setups using daily PET values showed better performance over the model setups using climatological monthly values.
- Keywords: Hargreaves method, potential evapotranspiration, hydrological modelling, crop factor, hydrological forecasting system, model performance analysis.
- Full text: a34mk.pdf
- References:
- Allen, R. G., Pereira, L. S., Raes, D., Smith, M. (1998). Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, FAO, Rome. ISBN 92-5-104219-5. Dostopno na: http://www.fao.org/3/X0490E/x0490e00.htm#Contents (pridobljeno: 27. 2. 2019).
- ARSO (2021). Agrometeorološka napoved ARSO. Dostopno na: http://meteo.arso.gov.si/met/sl/agromet/forecast/
- (pridobljeno: 16. 2. 2021).
- ARSO (2019). Faktor rastlin za nekatere rastline. Oddelek za agrometeorološke analize. Sporočilo: Koprivšek, M. 18. 12. 2019. Osebna komunikacija.
- Cegnar, T. (2019). Podnebne razmere v maju 2019, Naše okolje, Mesečni bilten Agencije RS za okolje 5/XXVI, 3–26.
- Cesar, P., Šraj, M. (2012). Evapotranspiracija: pregled vplivnih dejavnikov in metod izračuna, Geografski vestnik 84(2), 73–87.
- Blaney, H. F., Criddle, W. P. (1950). Determining water requirements in irrigated areas from climatological and irrigation data, United States Department of Agriculture, Washington, 48 str.
- Bormann, H. (2011). Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations, Climatic Change 104, 729–753. https://doi.org/10.1007/s10584-010-9869-7.
- EEA (2019). Corine Land Cover 2018. Dostopno na:
- https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-corine (pridobljeno 1. 6. 2020).
- Hargreaves, G. H., Asce, F., Allen, R. G. (2003). History and evaluation of Hargreaves evapotranspiration equation, Journal of Irrigation and Drainage Engineering 129, 53–63. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53).
- Hargreaves, G. H., Samani, Z. A. (1985). Reference crop evapotranspiration from temperature, Applied Engineering in Agriculture. Paper presented in ASAERegional Meeting, Grand Junction, Colorado. https://doi.org/10.13031/2013.26773.
- Kovačec, M., Šraj, M. (2017). Uporaba modela SWAT za hidrološko modeliranje, Acta hydrotechnica 30(52), 1–13.
- Krause, P., Boyle, D.P., Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment, Advances in Geosciences 5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005.
- Lang, D., Zheng, J., Shi, J., Liao, F., Ma, X., Wang, W., Chen, X., Zhang, M. (2017). A Comparative Study of Potential Evapotranspiration Estimation by Eight Methods with FAO Penman–Monteith Method in Southwestern China, Water 9, 734, 1–18. https://doi.org/10.3390/w9100734.
- Maček, U., Bezak, N., Šraj, M. (2018). Reference evapotranspiration changes in Slovenia, Europe, Agricultural and Forest Meteorology 260-261, 183–192. https://doi.org/10.1016/j.agrformet.2018.06.014.
- Mikoš, M., Krajnc, A., Matičič, B., Müller, J., Rakovec, J., Roš, M., Brilly, M. (2002). Hidrološko izrazje, Acta hydrotechnica 20-32, 3–324.
- Nash, J. E., Sutcliffe, J. V. (1970). River flow forecasting through conceptual models. Part I: A discussion of principles. Journal of Hydrology 10, 282–290.
- Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., Loumagne, C. (2003). Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling, Journal of Hydrology 303, 290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026.
- Petan, S., Golob, A., Moderc, M. (2016). Hidrološki prognostični sistem Agencije Republike Slovenije za okolje. Acta hydrotechnica 28(49), 119–131.
- Schrödter, H. (1985). Verdunstung. Anwendungsorientierte Messverfahren und Bestimmungsmethoden. Springer Verlag, Berlin, 186 str.
- Snyder, R. L., Orang, M., Bali, K., Eching, S. (2000). Basic irrigation scheduling (BIS). University of California, 10 str.
- Sperna Weiland, F. C., Tisseuil, C., Dürr, H. H., Vrac, M., van Beek, L. P. H. (2012). Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study, Hydrololy and Earth System Sciences 16, 983‒1000. https://doi.org/10.5194/hess-16-983-2012.
- Time and Date AS (2019). Sun calculator. Dostopno na: https://www.timeanddate.com/ (pridobljeno: 18. 10. 2019).
- Vanderlinden, K., Giráldez, J. V., Van Meirvenne, M. (2004). Assessing Reference Evapotranspiration by the Hargreaves Method in Southern Spain, Journal of Irrigation and Drainage Engineering 130(3), 184–191. https://doi.org/10.1061/(ASCE)0733-9437(2004)130:3(184).
- Wald, L., Albuisson, M., Best, C., Delamare, C., Dumortier, D., Gaboardi, E., Hammer, A., Heinemann, D., Kift, R., Kunz, S., Lefèvre, M., Leroy, S., Martinoli, M., Ménard, L., Page, J., Prager, T., Ratto, C., Reise, C., Remund, J., Rimoczi-Paal, A., Van der Goot, E., Vanroy, F., Webb, A., (2004). SoDa: a Web service on solar radiation. Proceedings of the 14. Intern. Sonnenforum »Eurosun 2004«, Freiburg, Germany, Volume 3, 921–927.
- WMO (2008). Guide to Hydrological Practices. Volume I, Hydrology – From Measurement to Hydrological Information. WMO-No. 168.
- Žust, A. (2017). Trajnostna kmetijska pridelava zahteva spremljanje meteoroloških in agrometeoroloških dejavnikov. Kmečki glas 30.