Structural health monitoring of concrete gravity dams
- Authors: Mateja Klun, Dejan Zupan, Andrej Kryžanowski
- Citation: Acta hydrotechnica, vol. 34, no. 61, pp. 119-137, 2021. https://doi.org/10.15292/acta.hydro.2021.09
- Abstract: The ageing of dams is one of the major challenges in specifically Slovenian and generally global dam engineering. Dams are exposed to environmental (climate) changes, as well as time-dependent effects, such as changes in the operating schedules of dams intended primarily for hydroelectric production. These changes can accelerate dams’ ageing and lead to a decrease in their structural and operational safety. Dams are an important part of the infrastructure, as they bring about numerous benefits and at the same time they are also sources of risk. For example, in the event of partial or total failure they pose significant risk to downstream areas. Aging of dams, preserving their functionality, and maintaining their structural health are currently the main challenges of dam engineering. The mean age of Slovenian dams is already over 40 years, although Slovenia is not unique in this situation. In this paper there is presented a novel methodology to monitor structural health of concrete dams, with the use of noncontact and contact measurements through observation of structural vibrations. We present the in-situ experiment on the Brežice dam that began during the dam’s construction and continued into the first year of its operation.
- Keywords: vibration monitoring, concrete dam, measurements, structural health monitoring.
- Full text: a34mk2.pdf
- References:
- ANCOLD (2018). Register of Large Dams in Australia. Dostopno na: https://www.ancold.org.au/?page_id=24 (pridobljeno 6. 12. 2018).
- Bernstone, C. (2006). Automated performance monitoring of concrete dams. Thesis, Engineering geology, Faculty of Engineering, Lund University, 94 p.
- Birtharia, A., Jain, S. K. (2015). Applications of Ambient Vibration Testing: An Overview. Int. Res. J. Eng. Technol. 2(4), 969–976.
- Brincker, R., Ventura, C. (2015). Introduction to operational modal analysis. John Wiley & Sons, Ltd, 372 p.
- https://doi.org/10.1002/9781118535141.
- Bukenya, P., Moyo, P., Beushausen, H., Oosthuizen, C. (2014). Health monitoring of concrete dams: a literature review. J. Civ. Struct. Heal. Monit. 4(4), 235–244. https://doi.org/10.1007/s13349-014-0079-2.
- Courtney, T. H. (2005). Mechanical Behaviour of materials, 2nd ed. Waveland press, Inc., Long Grove, Illinois, 733 p.
- DEWESoft (2019). DEWESoft measurement innovation User manual.
- DIANA FEA (2017). User’s Manual - Release 10.2. Diana FEA BV. Delft, Netherlands.
- Halkon, B. J., Rothberg, S. J. (2017a). Taking laser Doppler vibrometry off the tripod: correction of measurements affected by instrument vibration. Opt. Lasers Eng. 91, 16–23. https://doi.org/10.1016/j.optlaseng.2016.11.006.
- Halkon, B. J., Rothberg, S. J. (2017b). Restoring high accuracy to laser Doppler vibrometry measurements affected by vibration of beam steering optics. J. Sound Vib. 405, 144–157. https://doi.org/10.1016/j.jsv.2017.05.014.
- Hillgren, N. (2011). Analysis of hydraulic pressure transients in the waterways of hydropower stations. Thesis, University of Uppsala, 70 p.
- Hočevar, M. (2018). Introduction to turbine machinery. Fakulteta za strojništvo, Ljubljana, 190 p.
- Hsieh, K. H., Halling, M. W., Barr, P. J. (2006). Overview of Vibrational Structural Health Monitoring with Representative Case Studies. J. Bridg. Eng. II(6), 707–715. https://doi.org/10.1061/(asce)1084-0702(2006)11:6(707).
- ICOLD Committee on Dam Ageing (1994). Ageing of dams and appurtenant works Review and recomendations Bulletin 93. ICOLD - CIGB, Paris, 237 p.
- ICOLD Technical Committee on Dams for Hydroelectric Energy. (2019). Dams for hydroelectric energy (Bulletin Preprint). CRC Press, Paris, 77 p.
- Killingtveit, Å. (2019). Hydropower, in: Letcher, T. M. B. T.-M. G. W. (Ed.), Manageing Global Warming An Interface of Technology and Human Issues. Academic Press, 265–315. https://doi.org/https://doi.org/10.1016/B978-0-12-814104-5.00008-9.
- Klun, M., Zupan, D., Lopatič, J., Kryžanowski, A. (2019). On the application of laser vibrometry to perform structural health monitoring in non-stationary conditions of a hydropower dam. Sensors (Switzerland) 19(17). https://doi.org/10.3390/s19173811.
- Lopez, F., Restrepo Velez, L. (2003). Assessment and structural rehabilitation with post-tensioning and CFRP of a mass concrete structure subjected to dynamic loading, in: FIB Symposium Concrete Structures in Seismic Regions. Athens, Greece.
- Martin, P., Rothberg, S. J. (2011). Methods for the quantification of pseudo-vibration sensitivities in laser vibrometry. Meas. Sci. Technol. 22(3). https://doi.org/10.1088/0957-0233/22/3/035302.
- Mikec, S. (2018). Prehodnost vodnih turbin tipa Kaplan za dolvodne ribje migracije - Passibility of Kaplan turbine for downstream fish passage. Univerza v Ljubljani, 65 p. (in Slovenian).
- Rothberg, S. (2006). Numerical simulation of speckle noise in laser vibrometry. Appl. Opt. 45(19), 4523–4533. https://doi.org/10.1364/AO.45.004523.
- Rothberg, S. J., Baker, J. R., Halliwell, N. A. (1989). Laser Vibrometry: Psuedo-Vibrations. J. Sound Vib. 135(3), 516–522. https://doi.org/10.1016/0022-460X(89)90705-0.
- Seleznev, V., Liseikin, A., Bryksin, A. (2014). What Caused the Accident at the Sayano–Shushenskaya Hydroelectric Power Plant (SSHPP): A Seismologist’s Point of View. Seismol. Res. Lett. 85(4), 817–824. https://doi.org/10.2166/wst.2007.821.
- SLOCOLD (2021). List of Large Dams in Slovenia, SLOCOLD - Slovenian National Committee on Large Dams. Dostopno na: http://www.slocold.si/e_pregrade_seznam.htm (pridobljeno: 1. 5. 2021).
- Smolar-Žvanut, N., Meljo, J., Kodre, N., Prohinar, T. (2019). Multipurpose water uses of reservoirs in Slovenia, in: Sustainable and Safe Dams around the World. Canadian dam association, Ottawa, Canada, 1619–1629.
- Strean, R. F., Mitchell, L. D., Barker, A. J. (1998). Global noise characteristics of a laser Doppler vibrometer 1. Theory. Opt. Lasers Eng. 30(2), 127–139. https://doi.org/10.1016/S0143-8166(98)00014-1.
- The MathWorks (2018). MATLAB release 2018a. Natick, Massachusetts, USA.
- Trivedi, C., Gandhi, B., Michel, C. J. (2013). Effect of transients on Francis turbine runner life: A review. J. Hydraul. Res. 51(2), 121–132. https://doi.org/10.1080/00221686.2012.732971.
- Urquiza, G., García, J. C., González, J. G., Castro, L., Rodríguez, J. A., Basurto-pensado, M. A. (2014). Failure analysis of a hydraulic Kaplan turbine shaft. Eng. Fail. Anal. 41, 108–117. https://doi.org/10.1016/j.engfailanal.2014.02.009.
- USBR (2018). National Inventory of Dams Dataset Dostopno na: http://nid.usace.army.mil/ (pridobljeno: 1. 5. 2021).
- Zenz, G. (Ed.) (2008). Book of Extended Abstracts symposium Hydro Engineering, in: Book of Extended Abstracts Symposium Hydro Engineering. ICOLD, Vienna, Austria. https://doi.org/10.3217/978-3-85125-613-0.
- Zhang, L. M., Peng, M., Chang, D., Xu, Y. (2016). Dam failure mechanisms and risk assessment. John Wiley & Sons Singapore Pte. Ltd, 450 p.