Structural health monitoring of concrete gravity dams
Spremljanje kondicijskega stanja betonskih težnostnih pregrad
- Avtorji: Mateja Klun, Dejan Zupan, Andrej Kryžanowski
- Citat: Acta hydrotechnica, vol. 34, no. 61, pp. 119-137, 2021. https://doi.org/10.15292/acta.hydro.2021.09
- Povzetek: Staranje vodnih pregrad je eden ključnih izzivov pregradnega inženirstva v Sloveniji kot tudi drugod po svetu. Poleg tega so pregrade izpostavljene spremembam v okolju (podnebne spremembe) in drugim časovno odvisnim vplivom, kot na primer spremembam obratovalnih režimov na pregradah, ki so primarno namenjene hidroenergetski izrabi. Skupek vseh teh sprememb dodatno prispeva k procesu staranja ter k zmanjšanju obratovalne varnosti objektov. Pregrade so zelo pomembni infrastrukturni objekti, ki prinašajo številne koristi kot tudi dodatno tveganje v okolju. V primeru tehničnih okvar in porušitev (delnih ali popolnih) lahko predstavljajo nevarnost za dolvodna območja. Zagotavljanje dobrega kondicijskega stanja starajočih se pregrad trenutno predstavlja enega glavnih izzivov pregradnega inženirstva, saj je povprečna starost slovenskih pregrad že več kot 40 let. S podobnimi izzivi se soočajo tudi drugod po svetu. V prispevku predstavljamo metodologijo za spremljanje kondicijskega stanja betonskih pregrad s spremljanjem vibracij. Metodologija temelji na uporabi nekontaktnih in kontaktnih meritev z beleženjem vibracij na površini konstrukcije. Eksperimentalno delo smo izvajali na pregradi Brežice, ki smo jo začeli spremljati že med gradnjo in nato v prvem leu obratovanja.
- Ključne besede: spremljanje vibracij, betonska pregrada, meritve, spremljanje kondicijskega stanja
- Polno besedilo: a34mk2.pdf
- Viri:
- ANCOLD (2018). Register of Large Dams in Australia. Dostopno na: https://www.ancold.org.au/?page_id=24 (pridobljeno 6. 12. 2018).
- Bernstone, C. (2006). Automated performance monitoring of concrete dams. Thesis, Engineering geology, Faculty of Engineering, Lund University, 94 p.
- Birtharia, A., Jain, S. K. (2015). Applications of Ambient Vibration Testing: An Overview. Int. Res. J. Eng. Technol. 2(4), 969–976.
- Brincker, R., Ventura, C. (2015). Introduction to operational modal analysis. John Wiley & Sons, Ltd, 372 p.
- https://doi.org/10.1002/9781118535141.
- Bukenya, P., Moyo, P., Beushausen, H., Oosthuizen, C. (2014). Health monitoring of concrete dams: a literature review. J. Civ. Struct. Heal. Monit. 4(4), 235–244. https://doi.org/10.1007/s13349-014-0079-2.
- Courtney, T. H. (2005). Mechanical Behaviour of materials, 2nd ed. Waveland press, Inc., Long Grove, Illinois, 733 p.
- DEWESoft (2019). DEWESoft measurement innovation User manual.
- DIANA FEA (2017). User’s Manual - Release 10.2. Diana FEA BV. Delft, Netherlands.
- Halkon, B. J., Rothberg, S. J. (2017a). Taking laser Doppler vibrometry off the tripod: correction of measurements affected by instrument vibration. Opt. Lasers Eng. 91, 16–23. https://doi.org/10.1016/j.optlaseng.2016.11.006.
- Halkon, B. J., Rothberg, S. J. (2017b). Restoring high accuracy to laser Doppler vibrometry measurements affected by vibration of beam steering optics. J. Sound Vib. 405, 144–157. https://doi.org/10.1016/j.jsv.2017.05.014.
- Hillgren, N. (2011). Analysis of hydraulic pressure transients in the waterways of hydropower stations. Thesis, University of Uppsala, 70 p.
- Hočevar, M. (2018). Introduction to turbine machinery. Fakulteta za strojništvo, Ljubljana, 190 p.
- Hsieh, K. H., Halling, M. W., Barr, P. J. (2006). Overview of Vibrational Structural Health Monitoring with Representative Case Studies. J. Bridg. Eng. II(6), 707–715. https://doi.org/10.1061/(asce)1084-0702(2006)11:6(707).
- ICOLD Committee on Dam Ageing (1994). Ageing of dams and appurtenant works Review and recomendations Bulletin 93. ICOLD - CIGB, Paris, 237 p.
- ICOLD Technical Committee on Dams for Hydroelectric Energy. (2019). Dams for hydroelectric energy (Bulletin Preprint). CRC Press, Paris, 77 p.
- Killingtveit, Å. (2019). Hydropower, in: Letcher, T. M. B. T.-M. G. W. (Ed.), Manageing Global Warming An Interface of Technology and Human Issues. Academic Press, 265–315. https://doi.org/https://doi.org/10.1016/B978-0-12-814104-5.00008-9.
- Klun, M., Zupan, D., Lopatič, J., Kryžanowski, A. (2019). On the application of laser vibrometry to perform structural health monitoring in non-stationary conditions of a hydropower dam. Sensors (Switzerland) 19(17). https://doi.org/10.3390/s19173811.
- Lopez, F., Restrepo Velez, L. (2003). Assessment and structural rehabilitation with post-tensioning and CFRP of a mass concrete structure subjected to dynamic loading, in: FIB Symposium Concrete Structures in Seismic Regions. Athens, Greece.
- Martin, P., Rothberg, S. J. (2011). Methods for the quantification of pseudo-vibration sensitivities in laser vibrometry. Meas. Sci. Technol. 22(3). https://doi.org/10.1088/0957-0233/22/3/035302.
- Mikec, S. (2018). Prehodnost vodnih turbin tipa Kaplan za dolvodne ribje migracije - Passibility of Kaplan turbine for downstream fish passage. Univerza v Ljubljani, 65 p. (in Slovenian).
- Rothberg, S. (2006). Numerical simulation of speckle noise in laser vibrometry. Appl. Opt. 45(19), 4523–4533. https://doi.org/10.1364/AO.45.004523.
- Rothberg, S. J., Baker, J. R., Halliwell, N. A. (1989). Laser Vibrometry: Psuedo-Vibrations. J. Sound Vib. 135(3), 516–522. https://doi.org/10.1016/0022-460X(89)90705-0.
- Seleznev, V., Liseikin, A., Bryksin, A. (2014). What Caused the Accident at the Sayano–Shushenskaya Hydroelectric Power Plant (SSHPP): A Seismologist’s Point of View. Seismol. Res. Lett. 85(4), 817–824. https://doi.org/10.2166/wst.2007.821.
- SLOCOLD (2021). List of Large Dams in Slovenia, SLOCOLD - Slovenian National Committee on Large Dams. Dostopno na: http://www.slocold.si/e_pregrade_seznam.htm (pridobljeno: 1. 5. 2021).
- Smolar-Žvanut, N., Meljo, J., Kodre, N., Prohinar, T. (2019). Multipurpose water uses of reservoirs in Slovenia, in: Sustainable and Safe Dams around the World. Canadian dam association, Ottawa, Canada, 1619–1629.
- Strean, R. F., Mitchell, L. D., Barker, A. J. (1998). Global noise characteristics of a laser Doppler vibrometer 1. Theory. Opt. Lasers Eng. 30(2), 127–139. https://doi.org/10.1016/S0143-8166(98)00014-1.
- The MathWorks (2018). MATLAB release 2018a. Natick, Massachusetts, USA.
- Trivedi, C., Gandhi, B., Michel, C. J. (2013). Effect of transients on Francis turbine runner life: A review. J. Hydraul. Res. 51(2), 121–132. https://doi.org/10.1080/00221686.2012.732971.
- Urquiza, G., García, J. C., González, J. G., Castro, L., Rodríguez, J. A., Basurto-pensado, M. A. (2014). Failure analysis of a hydraulic Kaplan turbine shaft. Eng. Fail. Anal. 41, 108–117. https://doi.org/10.1016/j.engfailanal.2014.02.009.
- USBR (2018). National Inventory of Dams Dataset Dostopno na: http://nid.usace.army.mil/ (pridobljeno: 1. 5. 2021).
- Zenz, G. (Ed.) (2008). Book of Extended Abstracts symposium Hydro Engineering, in: Book of Extended Abstracts Symposium Hydro Engineering. ICOLD, Vienna, Austria. https://doi.org/10.3217/978-3-85125-613-0.
- Zhang, L. M., Peng, M., Chang, D., Xu, Y. (2016). Dam failure mechanisms and risk assessment. John Wiley & Sons Singapore Pte. Ltd, 450 p.