The effect of ultrasound for algae growth control on zooplankton
- Authors: Pija Klemenčič, Aleksandra Krivograd Klemenčič
- Citation: Acta hydrotechnica, vol. 34, no. 60, pp. 1-9, 2021. https://doi.org/10.15292/acta.hydro.2021.01
- Abstract: The use of ultrasound (US) to control algal growth in natural water bodies raises concern about the undesirable effects of US on non-target organisms. In this study a lab-scale experiment was performed to evaluate the effects of low-power US to counteract algal growth on adult and juvenile Daphnia magna. The 48-hour experiment was conducted in a 200 L glass aquarium with three fish nets, each filled with five D. magna. Each net was inspected for immobilized D. magna on different times during ultrasonication; additionally, basic physical-chemical parameters were measured. The results showed that tested low-power US device had no acute effect on the mobility of adult or juvenile D. magna, since after 48 h of ultrasonication 87% and 82% of adult and juvenile organisms remained mobile, with the same or higher percentage of mobile D. magna in the control groups. Additionally, no statistically significant effects were noticed on the measured physico-chemical parameters. However, when applied for algae control in field conditions, US is in operation constantly or at least for a long period of time (several weeks or months); therefore, the effect of long-term exposure to ultrasonication on zooplankton should be tested to ensure that US devices are safe for zooplankton.
- Keywords: algal control, ultrasound, non-target organisms, zooplankton, Daphnia magna.
- Full text: a34pk.pdf
- References:
- Asakura, Y., Yasuda, K., Kato, D., Kojima, Y., Koda, S. (2008). Development of a large sonochemical reactor at a high frequency. Chemical Engineering 139, 339-343. https://doi.org/10.1016/j.cej.2007.08.007.
- Carey, C. C., Ibelings, B. W., Hoffman, E. P., Hamilton, D. P., Brookes, J. D. (2012). Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research 46, 1394-1407. https://doi.org/10.1016/j.watres.2011.12.016.
- Chen, G., Ding, X., Zhou, W. (2020). Study on ultrasonic treatment for degradation of Microcystins (MCs). Ultrasonics Sonochemistry 104900. https://doi.org/10.1016/j.ultsonch.2019.104900.
- Dehghani, M. H. (2016). Removal of cyanobacterial and algal cells from water by ultrasonic waves - A review. Journal of Molecular Liquids 222, 1109-1114. https://doi.org/10.1016/j.molliq.2016.08.010.
- Ebert, D. (2005). Ecology, epidemiology, and evolution of parasitism in Daphnia. Bethesda (MD), National Library of Medicine (US), National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books (accessed 13. 1. 2021)
- Gao, S., Lewis, G. D., Ashokkumar, M., Hemar, Y. (2014). Inactivation of microorganisms by low-frequency high-power ultrasound: 2. A simple model for the inactivation mechanism. Ultrasonics Sonochemistry 21, 454-460. https://doi.org/10.1016/j.ultsonch.2013.06.007.
- Hedge, E. (2013). Investigating the impact of ultrasonic algal control on Daphnia in a freshwater ecosystem. BSc, Lancaster University, 30 pp. https://www.ultrasonicalgaecontrol.co.uk/downloads/E_Headge_Dissertation.pdf (accessed 10. 1. 2021).
- Jarni, K., Griessler Bulc, T., Krivograd Klemenčič, A. (2017). Occurrence, toxins and possibilities of control of bloom-forming cyanobacteria of European freshwaters: a review. Acta biologica Slovenica 60, 3-28.
- Jemec, A., Horvat, P., Kunej, U., Bele, M., Kržan, A. (2016). Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environmental Pollution 219, 201–209. https://doi.org/10.1016/j.envpol.2016.10.037.
- Joyce, E. M., Wu, X., Mason, T. J. (2010). Effects of ultrasonic frequency and power on algae suspensions. Journal of Environmental Science and Health, Part A 45, 863-866. https://doi.org/10.1080/10934521003709065.
- Kelpsiene, E., Torstensson, O., Ekvall, M. T., Hansson, L.-A., Cedervall, T. (2020). Long-term exposure to nanoplastics reduces life-time in Daphnia magna. Scientific Reports 10, 5979. https://doi.org/10.1038/s41598-020-63028-1.
- Krivograd Klemenčič, A., Eleršek, T., Žitnik, M., Jarni, K., Reinhart, R., Lazar, B., Griessler Bulc, T. (2015). DRONIC - Application of an unmanned surface vessel with ultrasonic, environmentally friendly system to (map and) control blue green algae (Cyanobacteria): ultrasonic cyanobacteria control - final report. University of Ljubljana, Faculty of Civil and Geodetic Engineering, Ljubljana, 25 pp.
- Lowe, M. (2011). Ultrasonic control of algae in stormwater systems. Water New Zealand, 7th South Pacific Stormwater Conference.
- Lürling, M., Tolman, Y. (2014a). Beating the blues: Is there any music in fighting cyanobacteria with ultrasound? Water research 66, 361-373. https://doi.org/10.1016/j.watres.2014.08.043.
- Lürling, M., Tolman, Y. (2014b). Effects of commercially available ultrasound on the zooplankton grazer Daphnia and consequent water greening in laboratory experiments. Water 6, 3247-3263. https://doi.org/10.3390/w6113247.
- OECD Guidelines for testing of Chemicals – Daphnia sp. Acute immobilisation test. N° 202-13/04/2004.
- Park, J., Church, J., Son, Y., Kim, K.-T., Lee, W. H. (2017). Recent advances in ultrasonic treatment: challenges and field applications for controlling harmful algal blooms (HABs). Ultrasonics Sonochemistry 38, 326-334. http://dx.doi.org/10.1016/j.ultsonch.2017.03.003.
- Rodriguez-Molares, A., Dickson, S., Hobson, P., Howard, C., Zander, A., Burch, M. (2014). Quantification of the ultrasound induced sedimentation of Microcystis aeruginosa. Ultrasonics Sonochemistry 21, 1299-1304. https://doi.org/10.1016/j.ultsonch.2014.01.027.
- Saebelfeld, M., Minguez, L., Griebel, J., Gessner, M. O., Wolinska, J. (2017). Humic dissolved organic carbon drives oxidative stress and severe fitness impairments in Daphnia. Aquatic Toxicology 182, 31-38. https://doi.org/10.1016/j.aquatox.2016.11.006.
- Sassi, J., Viitasalo, S., Rytkönen, J., Leppäkoski, E. (2005). Experiments with ultraviolet light, ultrasound and ozone technologies for onboard ballast water treatment. Espoo, VTT Tiedotteita, Research Notes 2313, 80 pp.
- https://www.vttresearch.com/sites/default/files/pdf/tiedotteet/2005/T2313.pdf (Accessed 15.1.2021)
- Tang, X., Wen, Y., He, Y., Jiang, H., Dai, X., Bi, X., Wagner, M., Chen, H. (2020). Full-scale semi-centralized wastewater treatment facilities for resource recovery: operation, problems and resolutions. Water Science Technology 82, 303-314. https://doi.org/10.2166/wst.2020.169.
- Teixeira, M. R., Rosa, M. J. (2007). Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa: Part II. The effect of water background organics. Separation and Purification Technology 53, 126-134. https://doi.org/10.1016/j.seppur.2006.07.001.
- Vázquez-López, M., Amabilis-Sosa, L. E., Moeller-Chávez, G. E., Roé-Sosa, A., Neumann, P., Vidal, G. (2019). Evaluation of the ultrasound effect on treated municipal wastewater. Environmental Technology 40, 3568-3577. https://doi.org/10.1080/09593330.2018.1481889.
- Wells, P. N. T. (1968). The effect of ultrasonic irradiation on the survival of Daphnia magna. Experimental Biology 49, 61-70.
- Wetzel, R. (2001). Limnology. Lake and river ecosystems, 3rd ed. Academic Press, San Diego, 1006 pp.
- Wu, X., Joyce, E. M., Mason, T. J. (2011). The effects of ultrasound on cyanobacteria. Harmful Algae 10, 738-743. https://doi.org/10.1016/j.hal.2011.06.005.
- Zhang, M., Duan, H., Shi, X., Yu, Y., Kong, F. (2012). Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change. Water Research 46, 442-452. https://doi.org/10.1016/j.watres.2011.11.013.
- Žitnik, M., Šunta, U., Godič Torkar, K., Krivograd Klemenčič, A., Atanasova, N., Griessler Bulc, T. (2019). The study of interactions and removal efficiency of Escherichia coli in raw blackwater treated by microalgae Chlorella vulgaris. Journal of Cleaner Production 238, 117865. https://doi.org/10.1016/j.jclepro.2019.117865.