The effect of ultrasound for algae growth control on zooplankton
Vpliv ultrazvoka za zaviranje rasti alg na zooplankton
- Avtorji: Pija Klemenčič, Aleksandra Krivograd Klemenčič
- Citat: Acta hydrotechnica, vol. 34, no. 60, pp. 1-9, 2021. https://doi.org/10.15292/acta.hydro.2021.01
- Povzetek: Glede uporabe ultrazvoka (UZ) za zaviranje rasti alg v naravnih vodnih telesih se porajajo pomisleki zaradi možnih neželenih vplivov na netarčne organizme. Namen laboratorijskega eksperimenta, izvedenega v tej raziskavi, je bil ovrednotiti vpliv nizkoenergijskega UZ, ki se uporablja za zaviranje rasti alg, na odrasle in juvenilne osebke Daphnia magna. Eksperiment je trajal 48 h in je bil izveden v 200-litrskem steklenem akvariju s tremi akvarijskimi mrežicami, pri čemer je bilo v vsaki pet osebkov D. magna. V vsaki mrežici smo spremljali mobilnost D. magna v različnih časovnih intervalih in pri tem merili tudi osnovne fizikalno-kemijske parametre. Rezultati so pokazali, da testirani nizkoenergijski UZ ni imel akutnega vpliva na mobilnost odraslih in juvenilnih osebkov D. magna. Po 48 h je bilo mobilnih 87 % odraslih in 82 % juvenilnih osebkov z enakim ali večjim odstotkom mobilnih osebkov v kontrolah. Poleg tega nismo zaznali statistično pomembnih učinkov na izmerjene fizikalno-kemijske parametre med različnimi časi obdelave z UZ. Ko se ultrazvočne naprave uporabljajo za zaviranje rasti alg v naravnih pogojih, so te priključene nenehno ali vsaj dlje časa (nekaj tednov, mesecev), zato bi bilo treba raziskati tudi učinke dolgotrajne izpostavljenosti UZ na zooplankton. Le tako bi lahko trdili, da je uporaba UZ za zooplankton varna.
- Ključne besede: zaviranje rasti alg, ultrazvok, netarčni organizmi, zooplankton, Daphnia magna
- Polno besedilo: a34pk.pdf
- Viri:
- Asakura, Y., Yasuda, K., Kato, D., Kojima, Y., Koda, S. (2008). Development of a large sonochemical reactor at a high frequency. Chemical Engineering 139, 339-343. https://doi.org/10.1016/j.cej.2007.08.007.
- Carey, C. C., Ibelings, B. W., Hoffman, E. P., Hamilton, D. P., Brookes, J. D. (2012). Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research 46, 1394-1407. https://doi.org/10.1016/j.watres.2011.12.016.
- Chen, G., Ding, X., Zhou, W. (2020). Study on ultrasonic treatment for degradation of Microcystins (MCs). Ultrasonics Sonochemistry 104900. https://doi.org/10.1016/j.ultsonch.2019.104900.
- Dehghani, M. H. (2016). Removal of cyanobacterial and algal cells from water by ultrasonic waves - A review. Journal of Molecular Liquids 222, 1109-1114. https://doi.org/10.1016/j.molliq.2016.08.010.
- Ebert, D. (2005). Ecology, epidemiology, and evolution of parasitism in Daphnia. Bethesda (MD), National Library of Medicine (US), National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books (accessed 13. 1. 2021)
- Gao, S., Lewis, G. D., Ashokkumar, M., Hemar, Y. (2014). Inactivation of microorganisms by low-frequency high-power ultrasound: 2. A simple model for the inactivation mechanism. Ultrasonics Sonochemistry 21, 454-460. https://doi.org/10.1016/j.ultsonch.2013.06.007.
- Hedge, E. (2013). Investigating the impact of ultrasonic algal control on Daphnia in a freshwater ecosystem. BSc, Lancaster University, 30 pp. https://www.ultrasonicalgaecontrol.co.uk/downloads/E_Headge_Dissertation.pdf (accessed 10. 1. 2021).
- Jarni, K., Griessler Bulc, T., Krivograd Klemenčič, A. (2017). Occurrence, toxins and possibilities of control of bloom-forming cyanobacteria of European freshwaters: a review. Acta biologica Slovenica 60, 3-28.
- Jemec, A., Horvat, P., Kunej, U., Bele, M., Kržan, A. (2016). Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environmental Pollution 219, 201–209. https://doi.org/10.1016/j.envpol.2016.10.037.
- Joyce, E. M., Wu, X., Mason, T. J. (2010). Effects of ultrasonic frequency and power on algae suspensions. Journal of Environmental Science and Health, Part A 45, 863-866. https://doi.org/10.1080/10934521003709065.
- Kelpsiene, E., Torstensson, O., Ekvall, M. T., Hansson, L.-A., Cedervall, T. (2020). Long-term exposure to nanoplastics reduces life-time in Daphnia magna. Scientific Reports 10, 5979. https://doi.org/10.1038/s41598-020-63028-1.
- Krivograd Klemenčič, A., Eleršek, T., Žitnik, M., Jarni, K., Reinhart, R., Lazar, B., Griessler Bulc, T. (2015). DRONIC - Application of an unmanned surface vessel with ultrasonic, environmentally friendly system to (map and) control blue green algae (Cyanobacteria): ultrasonic cyanobacteria control - final report. University of Ljubljana, Faculty of Civil and Geodetic Engineering, Ljubljana, 25 pp.
- Lowe, M. (2011). Ultrasonic control of algae in stormwater systems. Water New Zealand, 7th South Pacific Stormwater Conference.
- Lürling, M., Tolman, Y. (2014a). Beating the blues: Is there any music in fighting cyanobacteria with ultrasound? Water research 66, 361-373. https://doi.org/10.1016/j.watres.2014.08.043.
- Lürling, M., Tolman, Y. (2014b). Effects of commercially available ultrasound on the zooplankton grazer Daphnia and consequent water greening in laboratory experiments. Water 6, 3247-3263. https://doi.org/10.3390/w6113247.
- OECD Guidelines for testing of Chemicals – Daphnia sp. Acute immobilisation test. N° 202-13/04/2004.
- Park, J., Church, J., Son, Y., Kim, K.-T., Lee, W. H. (2017). Recent advances in ultrasonic treatment: challenges and field applications for controlling harmful algal blooms (HABs). Ultrasonics Sonochemistry 38, 326-334. http://dx.doi.org/10.1016/j.ultsonch.2017.03.003.
- Rodriguez-Molares, A., Dickson, S., Hobson, P., Howard, C., Zander, A., Burch, M. (2014). Quantification of the ultrasound induced sedimentation of Microcystis aeruginosa. Ultrasonics Sonochemistry 21, 1299-1304. https://doi.org/10.1016/j.ultsonch.2014.01.027.
- Saebelfeld, M., Minguez, L., Griebel, J., Gessner, M. O., Wolinska, J. (2017). Humic dissolved organic carbon drives oxidative stress and severe fitness impairments in Daphnia. Aquatic Toxicology 182, 31-38. https://doi.org/10.1016/j.aquatox.2016.11.006.
- Sassi, J., Viitasalo, S., Rytkönen, J., Leppäkoski, E. (2005). Experiments with ultraviolet light, ultrasound and ozone technologies for onboard ballast water treatment. Espoo, VTT Tiedotteita, Research Notes 2313, 80 pp.
- https://www.vttresearch.com/sites/default/files/pdf/tiedotteet/2005/T2313.pdf (Accessed 15.1.2021)
- Tang, X., Wen, Y., He, Y., Jiang, H., Dai, X., Bi, X., Wagner, M., Chen, H. (2020). Full-scale semi-centralized wastewater treatment facilities for resource recovery: operation, problems and resolutions. Water Science Technology 82, 303-314. https://doi.org/10.2166/wst.2020.169.
- Teixeira, M. R., Rosa, M. J. (2007). Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa: Part II. The effect of water background organics. Separation and Purification Technology 53, 126-134. https://doi.org/10.1016/j.seppur.2006.07.001.
- Vázquez-López, M., Amabilis-Sosa, L. E., Moeller-Chávez, G. E., Roé-Sosa, A., Neumann, P., Vidal, G. (2019). Evaluation of the ultrasound effect on treated municipal wastewater. Environmental Technology 40, 3568-3577. https://doi.org/10.1080/09593330.2018.1481889.
- Wells, P. N. T. (1968). The effect of ultrasonic irradiation on the survival of Daphnia magna. Experimental Biology 49, 61-70.
- Wetzel, R. (2001). Limnology. Lake and river ecosystems, 3rd ed. Academic Press, San Diego, 1006 pp.
- Wu, X., Joyce, E. M., Mason, T. J. (2011). The effects of ultrasound on cyanobacteria. Harmful Algae 10, 738-743. https://doi.org/10.1016/j.hal.2011.06.005.
- Zhang, M., Duan, H., Shi, X., Yu, Y., Kong, F. (2012). Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change. Water Research 46, 442-452. https://doi.org/10.1016/j.watres.2011.11.013.
- Žitnik, M., Šunta, U., Godič Torkar, K., Krivograd Klemenčič, A., Atanasova, N., Griessler Bulc, T. (2019). The study of interactions and removal efficiency of Escherichia coli in raw blackwater treated by microalgae Chlorella vulgaris. Journal of Cleaner Production 238, 117865. https://doi.org/10.1016/j.jclepro.2019.117865.