The impact of crude glycerol from biodiesel production and its trace element content on biomethane production in a batch experiment: modelling as a step towards impartial routine comparison of results
- Authors: Sabina Kolbl Repinc, Leon Deutsch, Dragiša Savić, Franci Steinman, Bojana Danilović, Blaž Stres
- Citation: Acta hydrotechnica, vol. 34, no. 60, pp. 11-24, 2021. https://doi.org/10.15292/acta.hydro.2021.02
- Abstract: In this study, crude glycerol from the biodiesel industry was tested as a co-substrate in biogas production. To investigate the influence of crude glycerol and the underlying trace element (TE) content on the efficiency of biomethane production, a batch experiment using Automatic Methane Potential Test System (AMPTS II) was carried out. The single addition of crude glycerol significantly contributed only to the total content of K (14.4%), Si (17.3%), and P (11.6%), whereas the contributions of other metals were within the range of other substrates. The addition of crude glycerol increased biomethane production, however, its utilization beyond 1% of total volume resulted in prolonged lag phase and final cessation of biomethane production. The negative effects of inorganic salts present in crude glycerol were reflected in progressively diminishing parts of glycerol and methanol being utilized in its anaerobic digestion, posing serious problems for daily routine use. A nonlinear least square regression analysis was performed to fit the Gompertz, Logistic, Transfer, and Richards models to biomethane production. The most suitable model was the Richards model, exhibiting the best fit to the experimental curves for complex substrates. Glycerol fractions remaining after biodiesel production have to be pre-tested for their negative effects on the content of TEs and inorganic salts, lag phase in biogas production, before they are used as co-substrates in biogas production phase.
- Keywords: biomethane, crude glycerol, trace element, biodiesel, modelling, AMPTS II
- Full text: a34skr.pdf
- References:
- Asad-ur-Rehman, Saman Wijesekara, R. G., Nomura, N., Sato, S., Matsumura, M. (2008). Pre-treatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1,3-propanediol production byClostridium butyricum. J. Chem. Technol. Biotechnol. 83, 1072–1080. https://doi.org/10.1002/jctb.1917.
- Astals, S., Nolla-Ardèvol, V., Mata-Alvarez, J. (2012). Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate. Bioresour. Technol. 110, 63–70. https://doi.org/10.1016/j.biortech.2012.01.080.
- Batstone, D. J., Hernandez, J. L. A., Schmidt, J. E. (2005). Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors. Biotechnol. Bioeng. 91, 387–391. https://doi.org/10.1002/bit.20483.
- Bhatti, Z. I., Furukawa, K., Fujita, M. (1996). Feasibility of methanolic waste treatment in USAB reactors. Water Res. 30, 2559–2568. https://doi.org/10.1016/S0043-1354(96)00144-3.
- Castrillón, L., Fernández-Nava, Y., Ormaechea, P., Marañón, E. (2011). Optimization of biogas production from cattle manure by pre-treatment with ultrasound and co-digestion with crude glycerin. Bioresour. Technol. 102, 7845–7849. https://doi.org/10.1016/j.biortech.2011.05.047.
- Chen, S., Dong, J., Berthouex, P., Boyle, W. (2000). Fate of Pentachlorophenol (PCP) in an Anaerobic Digester. Water Environment Research, 72(2), 201–206. Retrieved September 18, 2020, from http://www.jstor.org/stable/25045359
- Chen, Y., Cheng, J. J., Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 99, 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057.
- Demirel, B., Scherer, P. (2011). Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy 35, 992–998. https://doi.org/10.1016/J.BIOMBIOE.2010.12.022.
- Elagroudy, S., Radwan, A. G., Banadda, N., Mostafa, N. G., Owusu, P. A., Janajreh, I. (2020). Mathematical models comparison of biogas production from anaerobic digestion of microwave pretreated mixed sludge. Renew. Energy 155, 1009–1020. https://doi.org/10.1016/j.renene.2020.03.166.
- Fernandez, A. S., Hashsham, S. A., Dollhopf, S. L., Raskin, L., Glagoleva, O., Dazzo, F. B., et al. (2000). Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl. Environ. Microbiol. 66, 4058–4067. https://doi.org/10.1128/AEM.66.9.4058-4067.2000.
- Fernández, A., Huang, S., Seston, S., Xing, J., Hickey, R., Criddle, C., et al. (1999). How stable is stable? Function versus community composition. Appl. Environ. Microbiol. 65, 3697–3704.
- Florencio, L., Field, J. A., Lettinga, G. (1995). Substrate competition between methanogens and acetogens during the degradation of methanol in UASB reactors. Water Res. 29, 915–922. https://doi.org/10.1016/0043-1354(94)00199-H.
- Fountoulakis, M. S., Petousi, I., Manios, T. (2010). Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Manag. 30, 1849–53. https://doi.org/10.1016/j.wasman.2010.04.011.
- Fountoulakis, M.S., Petousi, I., Manios, T. (2010). Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Manag. 30, 1849–53. https://doi.org/10.1016/j.wasman.2010.04.011.
- Frunzo, L., Fermoso, F. G., Luongo, V., Mattei, M. R., Esposito, G. (2019). ADM1-based mechanistic model for the role of trace elements in anaerobic digestion processes. J. Environ. Manage. 241, 587–602. https://doi.org/10.1016/J.JENVMAN.2018.11.058.
- Hashsham, S. A., Fernandez, A. S., Dollhopf, S. L., Dazzo, F. B., Hickey, R. F., Tiedje, J. M., et al. (2000). Parallel Processing of Substrate Correlates with Greater Functional Stability in Methanogenic Bioreactor Communities Perturbed by Glucose. Appl. Environ. Microbiol. 66, 4050–4057. https://doi.org/10.1128/AEM.66.9.4050-4057.2000.
- Huiliñir, C., Quintriqueo, A., Antileo, C., Montalvo, S. (2014). Methane production from secondary paper and pulp sludge: Effect of natural zeolite and modeling. Chem. Eng. J. 257, 131–137. https://doi.org/10.1016/j.cej.2014.07.058.
- Hutňan, M., Kolesárová, N., Bodík, I., Czölderová, M. (2013). Long-term monodigestion of crude glycerol in a UASB reactor. Bioresour. Technol. 130, 88–96. https://doi.org/10.1016/j.biortech.2012.12.003.
- Janaun, J., Ellis, N. (2010). Perspectives on biodiesel as a sustainable fuel. Renew. Sustain. Energy Rev. 14, 1312–1320. https://doi.org/10.1016/j.rser.2009.12.011.
- Jensen, P. D., Astals, S., Lu, Y., Devadas, M., Batstone, D. J. (2014). Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability. Water Res. 67, 355–366. https://doi.org/10.1016/j.watres.2014.09.024.
- Kolbl, S., Forte-Tavčer, P., Stres, B. (2017). Potential for valorization of dehydrated paper pulp sludge for biogas production: Addition of selected hydrolytic enzymes in semi-continuous anaerobic digestion assays. Energy 126, 326–334. https://doi.org/10.1016/j.energy.2017.03.050.
- Kolbl, S., Paloczi, A., Panjan, J., Stres, B. (2014). Addressing case specific biogas plant tasks: Industry oriented methane yields derived from 5L Automatic Methane Potential Test Systems in batch or semi-continuous tests using realistic inocula, substrate particle sizes and organic loading. Bioresour. Technol. 153, 180–188. https://doi.org/10.1016/j.biortech.2013.12.010.
- Kolesárová, N., Hutan, M., Bodík, I., Špalková, V. (2011). Utilization of biodiesel by-products for biogas production. J. Biomed. Biotechnol. 2011. https://doi.org/10.1155/2011/126798.
- Kong, P.S., Aroua, M.K., Daud, W.M.A.W. (2016). Conversion of crude and pure glycerol into derivatives: A feasibility evaluation. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2016.05.054.
- Mohamed, M. A., Nourou, D., Boudy, B., Mamoudou, N. (2018). Theoretical models for prediction of methane production from anaerobic digestion: A critical review. Int. J. Phys. Sci. 13, 206–216. https://doi.org/10.5897/ijps2018.4740.
- Nasreen, S., Nafees, M., Qureshi, L. A., Asad, M. S., Sadiq, A., Ali, S. D. (2018). “Review of Catalytic Transesterification Methods for Biodiesel Production,” in Biofuels - State of Development (InTech). https://doi.org/10.5772/intechopen.75534.
- Nghiem, L. D., Nguyen, T. T., Manassa, P., Fitzgerald, S. K., Dawson, M., Vierboom, S. (2014). Co-digestion of sewage sludge and crude glycerol for on-demand biogas production. Int. Biodeterior. Biodegrad. 95, 160–166. https://doi.org/10.1016/j.ibiod.2014.04.023.
- Nghiem, L.D., Nguyen, T.T., Manassa, P., Fitzgerald, S.K., Dawson, M., Vierboom, S. (2014). Co-digestion of sewage sludge and crude glycerol for on-demand biogas production. Int. Biodeterior. Biodegrad. 95, 160–166. https://doi.org/10.1016/j.ibiod.2014.04.023.
- OECD-FAO (2016). OECD-FAO Agricultural Outlook 2016-2025, OECD Publishing. [online] http://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2016_agr_outlook-2016-en.
- Paris, D., Blondeau, R. (1999). Isolation and characterization of Arthrobacter sp. from activated sludge of a pulp and paper mill. Water Res. 33, 947–950. https://doi.org/10.1016/S0043-1354(98)00298-X.
- Petrović, S. M., Savić, S. R., Petronijević, Ž. B. (2016). Macro- and micro-element analysis in milk samples by inductively coupled plasma – Optical emission spectrometry. Acta Periodica Technologica, 47, 51–62.
- Pobeheim, H., Munk, B., Johansson, J., Guebitz, G. M. (2010). Influence of trace elements on methane formation from a synthetic model substrate for maize silage. Bioresour. Technol. 101, 836–839. https://doi.org/10.1016/J.BIORTECH.2009.08.076.
- Razaviarani, V., Buchanan, I. D., Malik, S., Katalambula, H. (2013). Pilot scale anaerobic co-digestion of municipal wastewater sludge with biodiesel waste glycerin. Bioresour. Technol. 133, 206–212. https://doi.org/10.1016/j.biortech.2013.01.101.
- Roussel, J., Carliell-Marquet, C., Braga, A. F. M., Garuti, M., Serrano, A., Fermoso, F. G. (2019). Engineering of trace-element supplementation. Trace Elem. Anaerob. Biotechnol., 0. https://doi.org/10.2166/9781789060225_0073.
- Schattauer, A., Abdoun, E., Weiland, P., Plöchl, M., Heiermann, M. (2011). Abundance of trace elements in demonstration biogas plants. Biosyst. Eng. 108, 57–65. https://doi.org/10.1016/J.BIOSYSTEMSENG.2010.10.010.
- Siles, J. A., Martín, M. A., Chica, A. F., Martín, A. (2010). Anaerobic co-digestion of glycerol and wastewater derived from biodiesel manufacturing. Bioresour. Technol. 101, 6315–6321. https://doi.org/10.1016/j.biortech.2010.03.042.
- Soto, M., Méndez, R., Lema, J. M. (2007). Sodium inhibition and sulphate reduction in the anaerobic treatment of mussel processing wastewaters. J. Chem. Technol. Biotechnol. 58, 1–7. https://doi.org/10.1002/jctb.280580102.
- Thompson, J. C. He, B. B. (2005). Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22(2), 261–265. [online] https://www.biofuelscoproducts.umn.edu/sites/biodieselfeeds.cfans.umn.edu/files/2006-thompson-characterization_of_crude_glycerol_from_biodiesel_production.pdf.
- van Hullebusch, E. D., Guibaud, G., Simon, S., Lenz, M., Yekta, S. S., Fermoso, F. G., et al. (2016). Methodological approaches for fractionation and speciation to estimate trace element bioavailability in engineered anaerobic digestion ecosystems: An overview. Crit. Rev. Environ. Sci. Technol. 46, 1324–1366. https://doi.org/10.1080/10643389.2016.1235943.
- Viana, M. B., Freitas, A. V., Leitão, R. C., Pinto, G. A. S., Santaella, S. T. (2012). Anaerobic digestion of crude glycerol: a review. Environ. Technol. Rev. 1, 81–92. https://doi.org/10.1080/09593330.2012.692723.
- Ware, A., Power, N. (2017). Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renew. Energy 104, 50–59. https://doi.org/10.1016/j.renene.2016.11.045.
- Weinrich, S., Koch, S., Bonk, F., Popp, D., Benndorf, D., Klamt, S., et al. (2019). Augmenting Biogas Process Modeling by Resolving Intracellular Metabolic Activity. Front. Microbiol. 10, 1095. https://doi.org/10.3389/fmicb.2019.01095.
- Wintsche, B., Glaser, K., Sträuber, H., Centler, F., Liebetrau, J., Harms, H., et al. (2016). Trace Elements Induce Predominance among Methanogenic Activity in Anaerobic Digestion. Front. Microbiol. 7, 2034. https://doi.org/10.3389/fmicb.2016.02034.
- Wyman, V., Serrano, A., Borja, R., Jiménez, A., Carvajal, A., Lenz, M., et al. (2019). Effects of barium on the pathways of anaerobic digestion. J. Environ. Manage. 232, 397–403. https://doi.org/10.1016/J.JENVMAN.2018.11.065.
- Yang, F., Hanna, M. A., Sun, R. (2012). Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnol. Biofuels 5, 13. https://doi.org/10.1186/1754-6834-5-13.