The impact of crude glycerol from biodiesel production and its trace element content on biomethane production in a batch experiment: modelling as a step towards impartial routine comparison of results
Vpliv surovega glicerola iz proizvodnje biodizla in vsebnosti njegovih elementov v sledovih na proizvodnjo biometana v šaržnem eksperimentu: modeliranje kot korak k enakovredni rutinski primerjavi rezultatov
- Avtorji: Sabina Kolbl Repinc, Leon Deutsch, Dragiša Savić, Franci Steinman, Bojana Danilović, Blaž Stres
- Citat: Acta hydrotechnica, vol. 34, no. 60, pp. 11-24, 2021. https://doi.org/10.15292/acta.hydro.2021.02
- Povzetek: V študiji smo za proizvodnjo biometana kot kosubstrat uporabili surovi glicerol iz industrije proizvodnje biodizla. Da bi raziskali vpliv surovega glicerola in vsebnosti osnovnih elementov v sledovih (TE) na učinkovitost proizvodnje biometana, smo izvedli šaržni poskus z uporabo Automatic Methane Potential Test System (AMPTS II). Enkratno doziranje surovega glicerola je pomembno prispevalo le k skupni koncentraciji K (14,4 %), Si (17,3 %) in P (11,6 %), medtem ko so bili prispevki drugih elementov v sledeh v območju koncentracij drugih substratov. Z dodajanjem surovega glicerola se je povečala proizvodnja biometana, a ko je njegova uporaba presegla 1 % celotne prostornine, smo zaznali dolgotrajno lag-fazo in končno prenehanje proizvodnje biometana. Negativni učinki anorganskih soli, prisotnih v surovem glicerolu, so se odražali v postopnem zmanjševanju koncentracije glicerola in metanola, ki so se razgradili v procesu anaerobne presnove, to pa predstavlja resne težave pri vsakdanji rutinski uporabi surovega glicerola. Izvedena je bila analiza nelinearne regresije najmanjših kvadratov z uporabo modelov Gompertz, Logistic, Transfer in Richards za kumulativno proizvodnjo metana. Najprimernejši model je bil Richards, ki se je najbolj prilegal eksperimentalno izmerjenim krivuljam kompleksnih substratov. Frakcije glicerola, ki ostanejo po proizvodnji biodizla, je treba predhodno preizkusiti zaradi negativnih učinkov, ki jih lahko povzročajo TE, anorganske soli in lag-faze, preden se lahko uporabijo kot kosubstrati za pridobivanje bioplina.
- Ključne besede: biometan, surovi glicerol, elementi v sledovih, biodizel, modeliranje, AMPTS II
- Polno besedilo: a34skr.pdf
- Viri:
- Asad-ur-Rehman, Saman Wijesekara, R. G., Nomura, N., Sato, S., Matsumura, M. (2008). Pre-treatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1,3-propanediol production byClostridium butyricum. J. Chem. Technol. Biotechnol. 83, 1072–1080. https://doi.org/10.1002/jctb.1917.
- Astals, S., Nolla-Ardèvol, V., Mata-Alvarez, J. (2012). Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate. Bioresour. Technol. 110, 63–70. https://doi.org/10.1016/j.biortech.2012.01.080.
- Batstone, D. J., Hernandez, J. L. A., Schmidt, J. E. (2005). Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors. Biotechnol. Bioeng. 91, 387–391. https://doi.org/10.1002/bit.20483.
- Bhatti, Z. I., Furukawa, K., Fujita, M. (1996). Feasibility of methanolic waste treatment in USAB reactors. Water Res. 30, 2559–2568. https://doi.org/10.1016/S0043-1354(96)00144-3.
- Castrillón, L., Fernández-Nava, Y., Ormaechea, P., Marañón, E. (2011). Optimization of biogas production from cattle manure by pre-treatment with ultrasound and co-digestion with crude glycerin. Bioresour. Technol. 102, 7845–7849. https://doi.org/10.1016/j.biortech.2011.05.047.
- Chen, S., Dong, J., Berthouex, P., Boyle, W. (2000). Fate of Pentachlorophenol (PCP) in an Anaerobic Digester. Water Environment Research, 72(2), 201–206. Retrieved September 18, 2020, from http://www.jstor.org/stable/25045359
- Chen, Y., Cheng, J. J., Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 99, 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057.
- Demirel, B., Scherer, P. (2011). Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy 35, 992–998. https://doi.org/10.1016/J.BIOMBIOE.2010.12.022.
- Elagroudy, S., Radwan, A. G., Banadda, N., Mostafa, N. G., Owusu, P. A., Janajreh, I. (2020). Mathematical models comparison of biogas production from anaerobic digestion of microwave pretreated mixed sludge. Renew. Energy 155, 1009–1020. https://doi.org/10.1016/j.renene.2020.03.166.
- Fernandez, A. S., Hashsham, S. A., Dollhopf, S. L., Raskin, L., Glagoleva, O., Dazzo, F. B., et al. (2000). Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl. Environ. Microbiol. 66, 4058–4067. https://doi.org/10.1128/AEM.66.9.4058-4067.2000.
- Fernández, A., Huang, S., Seston, S., Xing, J., Hickey, R., Criddle, C., et al. (1999). How stable is stable? Function versus community composition. Appl. Environ. Microbiol. 65, 3697–3704.
- Florencio, L., Field, J. A., Lettinga, G. (1995). Substrate competition between methanogens and acetogens during the degradation of methanol in UASB reactors. Water Res. 29, 915–922. https://doi.org/10.1016/0043-1354(94)00199-H.
- Fountoulakis, M. S., Petousi, I., Manios, T. (2010). Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Manag. 30, 1849–53. https://doi.org/10.1016/j.wasman.2010.04.011.
- Fountoulakis, M.S., Petousi, I., Manios, T. (2010). Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Manag. 30, 1849–53. https://doi.org/10.1016/j.wasman.2010.04.011.
- Frunzo, L., Fermoso, F. G., Luongo, V., Mattei, M. R., Esposito, G. (2019). ADM1-based mechanistic model for the role of trace elements in anaerobic digestion processes. J. Environ. Manage. 241, 587–602. https://doi.org/10.1016/J.JENVMAN.2018.11.058.
- Hashsham, S. A., Fernandez, A. S., Dollhopf, S. L., Dazzo, F. B., Hickey, R. F., Tiedje, J. M., et al. (2000). Parallel Processing of Substrate Correlates with Greater Functional Stability in Methanogenic Bioreactor Communities Perturbed by Glucose. Appl. Environ. Microbiol. 66, 4050–4057. https://doi.org/10.1128/AEM.66.9.4050-4057.2000.
- Huiliñir, C., Quintriqueo, A., Antileo, C., Montalvo, S. (2014). Methane production from secondary paper and pulp sludge: Effect of natural zeolite and modeling. Chem. Eng. J. 257, 131–137. https://doi.org/10.1016/j.cej.2014.07.058.
- Hutňan, M., Kolesárová, N., Bodík, I., Czölderová, M. (2013). Long-term monodigestion of crude glycerol in a UASB reactor. Bioresour. Technol. 130, 88–96. https://doi.org/10.1016/j.biortech.2012.12.003.
- Janaun, J., Ellis, N. (2010). Perspectives on biodiesel as a sustainable fuel. Renew. Sustain. Energy Rev. 14, 1312–1320. https://doi.org/10.1016/j.rser.2009.12.011.
- Jensen, P. D., Astals, S., Lu, Y., Devadas, M., Batstone, D. J. (2014). Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability. Water Res. 67, 355–366. https://doi.org/10.1016/j.watres.2014.09.024.
- Kolbl, S., Forte-Tavčer, P., Stres, B. (2017). Potential for valorization of dehydrated paper pulp sludge for biogas production: Addition of selected hydrolytic enzymes in semi-continuous anaerobic digestion assays. Energy 126, 326–334. https://doi.org/10.1016/j.energy.2017.03.050.
- Kolbl, S., Paloczi, A., Panjan, J., Stres, B. (2014). Addressing case specific biogas plant tasks: Industry oriented methane yields derived from 5L Automatic Methane Potential Test Systems in batch or semi-continuous tests using realistic inocula, substrate particle sizes and organic loading. Bioresour. Technol. 153, 180–188. https://doi.org/10.1016/j.biortech.2013.12.010.
- Kolesárová, N., Hutan, M., Bodík, I., Špalková, V. (2011). Utilization of biodiesel by-products for biogas production. J. Biomed. Biotechnol. 2011. https://doi.org/10.1155/2011/126798.
- Kong, P.S., Aroua, M.K., Daud, W.M.A.W. (2016). Conversion of crude and pure glycerol into derivatives: A feasibility evaluation. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2016.05.054.
- Mohamed, M. A., Nourou, D., Boudy, B., Mamoudou, N. (2018). Theoretical models for prediction of methane production from anaerobic digestion: A critical review. Int. J. Phys. Sci. 13, 206–216. https://doi.org/10.5897/ijps2018.4740.
- Nasreen, S., Nafees, M., Qureshi, L. A., Asad, M. S., Sadiq, A., Ali, S. D. (2018). “Review of Catalytic Transesterification Methods for Biodiesel Production,” in Biofuels - State of Development (InTech). https://doi.org/10.5772/intechopen.75534.
- Nghiem, L. D., Nguyen, T. T., Manassa, P., Fitzgerald, S. K., Dawson, M., Vierboom, S. (2014). Co-digestion of sewage sludge and crude glycerol for on-demand biogas production. Int. Biodeterior. Biodegrad. 95, 160–166. https://doi.org/10.1016/j.ibiod.2014.04.023.
- Nghiem, L.D., Nguyen, T.T., Manassa, P., Fitzgerald, S.K., Dawson, M., Vierboom, S. (2014). Co-digestion of sewage sludge and crude glycerol for on-demand biogas production. Int. Biodeterior. Biodegrad. 95, 160–166. https://doi.org/10.1016/j.ibiod.2014.04.023.
- OECD-FAO (2016). OECD-FAO Agricultural Outlook 2016-2025, OECD Publishing. [online] http://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2016_agr_outlook-2016-en.
- Paris, D., Blondeau, R. (1999). Isolation and characterization of Arthrobacter sp. from activated sludge of a pulp and paper mill. Water Res. 33, 947–950. https://doi.org/10.1016/S0043-1354(98)00298-X.
- Petrović, S. M., Savić, S. R., Petronijević, Ž. B. (2016). Macro- and micro-element analysis in milk samples by inductively coupled plasma – Optical emission spectrometry. Acta Periodica Technologica, 47, 51–62.
- Pobeheim, H., Munk, B., Johansson, J., Guebitz, G. M. (2010). Influence of trace elements on methane formation from a synthetic model substrate for maize silage. Bioresour. Technol. 101, 836–839. https://doi.org/10.1016/J.BIORTECH.2009.08.076.
- Razaviarani, V., Buchanan, I. D., Malik, S., Katalambula, H. (2013). Pilot scale anaerobic co-digestion of municipal wastewater sludge with biodiesel waste glycerin. Bioresour. Technol. 133, 206–212. https://doi.org/10.1016/j.biortech.2013.01.101.
- Roussel, J., Carliell-Marquet, C., Braga, A. F. M., Garuti, M., Serrano, A., Fermoso, F. G. (2019). Engineering of trace-element supplementation. Trace Elem. Anaerob. Biotechnol., 0. https://doi.org/10.2166/9781789060225_0073.
- Schattauer, A., Abdoun, E., Weiland, P., Plöchl, M., Heiermann, M. (2011). Abundance of trace elements in demonstration biogas plants. Biosyst. Eng. 108, 57–65. https://doi.org/10.1016/J.BIOSYSTEMSENG.2010.10.010.
- Siles, J. A., Martín, M. A., Chica, A. F., Martín, A. (2010). Anaerobic co-digestion of glycerol and wastewater derived from biodiesel manufacturing. Bioresour. Technol. 101, 6315–6321. https://doi.org/10.1016/j.biortech.2010.03.042.
- Soto, M., Méndez, R., Lema, J. M. (2007). Sodium inhibition and sulphate reduction in the anaerobic treatment of mussel processing wastewaters. J. Chem. Technol. Biotechnol. 58, 1–7. https://doi.org/10.1002/jctb.280580102.
- Thompson, J. C. He, B. B. (2005). Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22(2), 261–265. [online] https://www.biofuelscoproducts.umn.edu/sites/biodieselfeeds.cfans.umn.edu/files/2006-thompson-characterization_of_crude_glycerol_from_biodiesel_production.pdf.
- van Hullebusch, E. D., Guibaud, G., Simon, S., Lenz, M., Yekta, S. S., Fermoso, F. G., et al. (2016). Methodological approaches for fractionation and speciation to estimate trace element bioavailability in engineered anaerobic digestion ecosystems: An overview. Crit. Rev. Environ. Sci. Technol. 46, 1324–1366. https://doi.org/10.1080/10643389.2016.1235943.
- Viana, M. B., Freitas, A. V., Leitão, R. C., Pinto, G. A. S., Santaella, S. T. (2012). Anaerobic digestion of crude glycerol: a review. Environ. Technol. Rev. 1, 81–92. https://doi.org/10.1080/09593330.2012.692723.
- Ware, A., Power, N. (2017). Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renew. Energy 104, 50–59. https://doi.org/10.1016/j.renene.2016.11.045.
- Weinrich, S., Koch, S., Bonk, F., Popp, D., Benndorf, D., Klamt, S., et al. (2019). Augmenting Biogas Process Modeling by Resolving Intracellular Metabolic Activity. Front. Microbiol. 10, 1095. https://doi.org/10.3389/fmicb.2019.01095.
- Wintsche, B., Glaser, K., Sträuber, H., Centler, F., Liebetrau, J., Harms, H., et al. (2016). Trace Elements Induce Predominance among Methanogenic Activity in Anaerobic Digestion. Front. Microbiol. 7, 2034. https://doi.org/10.3389/fmicb.2016.02034.
- Wyman, V., Serrano, A., Borja, R., Jiménez, A., Carvajal, A., Lenz, M., et al. (2019). Effects of barium on the pathways of anaerobic digestion. J. Environ. Manage. 232, 397–403. https://doi.org/10.1016/J.JENVMAN.2018.11.065.
- Yang, F., Hanna, M. A., Sun, R. (2012). Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnol. Biofuels 5, 13. https://doi.org/10.1186/1754-6834-5-13.