Automated catchment scale modelling of hydrological phenomena and water quality
- Authors: Mateja Škerjanec
- Citation: Acta hydrotechnica, vol. 35, no. 62, pp. 1-18, 2022. https://doi.org/10.15292/acta.hydro.2022.01
- Abstract: An automated approach to hydrologic and water quality modeling on a catchment scale is presented, one that automatically produces suitable models from domain modeling knowledge and measured data. An essential component of the methodology is the domain knowledge library, comprising knowledge on hydrological and nutrient loading processes and containing alternative formulations for some of them. The library is written in a formalism compatible with the equation discovery tool ProBMoT. Given a user specification of a modeling task, ProBMoT searches the space of alternative candidate models encoded in the library. The generated models are optimized against the provided measured data, and the best-fitted model is proposed as the most suitable for modeling the observed system. The methodology was applied to the Quarteira River catchment (Algarve, Portugal). Analysis of the average annual water balance, sediment yields, and nutrient loadings in the Quarteira River support the findings of the previous research work, while the ProBMoT results are comparable or better than the results obtained with the SWAT model.
- Keywords: automated modelling, ProBMoT, catchment, hydrology, nutrient wash-off, Quarteira.
- Full text: a35ms.pdf
- References:
- Abbaspour, K.C. (2013). SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs – A User Manual. Eawag, Dübendorf, 103 str.
- Arnold, J.G., Fohrer, N. (2005). SWAT2000, current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 19(3), 563–572. https://doi.org/10.1002/hyp.5611.
- Atanasova, N., Todorovski, L., Džeroski, S., Kompare, B. (2006). Constructing a library of domain knowledge for automated modelling of aquatic ecosystems. Ecol. Modell. 194(1-3), 14–36. https://doi.org/10.1016/j.ecolmodel.2005.10.002.
- Behrendt, H., Venohr, M., Hirt, U., Hofmann, J., Opitz, D., Gericke, A. (2007). The model system MONERIS. Version 2.0. User’s manual. Leibniz Institute of Freshwater Ecology and Inland Fisheries in the Forschungsverbund Berlin e.V., Berlin, 117 str.
- Čerepnalkoski, D., Taskova, K., Todorovski, L., Atanasova, N., Džeroski, S. (2012). The influence of parameter fitting methods on model structure selection in automated modelling of aquatic ecosystems. Ecol. Model. 245, 136–165. https://doi.org/10.1016/j.ecolmodel.2012.06.001.
- David, O., Ascough II, J.C., Lloyd, W., Green, T.R., Rojas, K.W., Leavesley, G.H., Ahuja, L.R. (2013). A software engineering perspective on environmental modelling framework design: The Object Modelling System. Environ. Model. Softw. 39, 201–213. https://doi.org/10.1016/j.envsoft.2012.03.006.
- de Kok, J-L., Engelen, G., Maes, J. (2015). Reusability of model components for environmental simulation – Case studies for integrated coastal zone management. Environ. Model. Softw. 68, 42–54. https://doi.org/10.1016/j.envsoft.2015.02.001.
- Driver, N.E., Tasker, G.D. (1990). Techniques for estimation of storm-runoff loads, volumes, and selected constituent concentrations in urban watersheds in the United States. U.S. Government Printing Office, Washington, DC, U.S., 44 str. https://pubs.usgs.gov/wsp/wsp2363/pdf/wsp_2363.pdf (Pridobljeno 27. 1. 2022.)
- Džeroski, S., Todorovski, L. (2003). Learning population dynamics models from data and domain knowledge. Ecol. Model. 170, 129–140. https://doi.org/10.1016/S0304-3800(03)00221-7.
- Haith, D.A., Mandel, R., Shyan Wu, R. (1992). GWLF – Generalized Watershed Loading Functions. Version 2.0. User’s manual. Cornell University, Department of Agricultural & Biological Engineering, Ithaca, NY, 62 str.
- Hamon, W.R. (1961). Estimating Potential Evapotranspiration. Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers 87(3), 107–120. https://doi.org/10.1061/JYCEAJ.0000599.
- Hargreaves, G.L., Hargreaves, G.H., Riley, J.P. (1985). Agricultural benefits for Senegal River Basin. J. Irrig. Drain Eng. 111(2), 113–124. https://doi.org/10.1061/(ASCE)0733-9437(1985)111:2(113).
- Jiang, J., Zhu, A-X., Qin, C-Z., Liu, J. (2019). A knowledge-based method for the automatic determination of hydrological model structures. J. Hydroinformatics 21(6), 1163–1178. https://doi.org/10.2166/hydro.2019.029.
- Laniak, G.F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., Whelan, G., Geller, G., Quinn, N., Blind, M., Peckam, S., Reaney, S., Gaber, N., Kennedey, R., Hughes, A. (2013). Integrated environmental modeling: a vision and roadmap for the future. Environ. Model. Softw. 39, 3–23. https://doi.org/10.1016/j.envsoft.2012.09.006.
- Leavesley, G.H., Markstrom, S.L., Restrepo, P.J., Viger, R.J. (2002). A modular approach to addressing model design, scale, and parameter estimation issues in distributed hydrological modelling. Hydrol. Process. 16, 173–187. https://doi.org/10.1002/hyp.344.
- Liu, J., Zhu, A. X., Qin, C. Z., Wu, H. & Jiang, J. (2016). A two-level parallelization method for distributed hydrological models. Environ. Modell. Softw. 80, 175–184. https://doi.org/10.1016/j.envsoft.2016.02.032.
- Mirsal, I.A. (2008). Soil Pollution. Origin, Monitoring & Remediation. 2nd Edition. Springer, Berlin, Heidelberg: 312 str.
- Monod, J. (1949). The Growth of Bacterial Culture. Annu. Rev. Microbiol. 3, 371–394. http://dx.doi.org/10.1146/annurev.mi.03.100149.002103.
- Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50(3), 885–900. https://doi.org/10.13031/2013.23153.
- Nash, J.E., Sutcliffe, J.V. (1970). River flow forecasting through conceptual models part I – A discussion of principles. J. Hydrol. 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
- NRCS. (1986). Urban Hydrology for Small Watersheds. Technical Release 55. USDA, Washington, DC, 164 str. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf (Pridobljeno 27. 1. 2022.)
- Radinja, M., Škerjanec, M., Džeroski, S., Todorovski, L. Atanasova, N. (2021a). Design and Simulation of Stormwater Control Measures Using Automated Modeling. Water 13, 2268. https://doi.org/10.3390/w13162268.
- Radinja, M., Škerjanec, M., Šraj, M., Džeroski, S., Todorovski, L. Atanasova, N. (2021b). Automated modelling of urban runoff based on domain knowledge and equation discovery. J. Hydrol. 603, 127077. https://doi.org/10.1016/j.jhydrol.2021.127077.
- Rao, L.Y., Sun, G., Ford, C.R., Vose, J.M. (2011). Modelling potential evapotranspiration of two forested watersheds in the southern Appalachians. Trans. ASABE 54(6), 2067–2078. https://doi.org/10.13031/2013.40666.
- Schwarz, G.E., Hoos, A.B., Alexander, R.B., Smith, R.A. (2006). The SPARROW Surface Water Quality Model – Theory, Application and User Documentation. USGS, Reston, VA, 248 str. http://pubs.usgs.gov/tm/2006/tm6b3/PDF.htm (Pridobljeno 27. 1. 2022.)
- Simidjievski, N., Todorovski, L., Kocijan, J., Dzeroski, S., (2020). Equation discovery for nonlinear system identification. IEEE Access 8, 29930–29943. https://doi.org/10.1109/ACCESS.2020.2972076.
- Storn, R., Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Global Optim. 11, 341–359. https://doi.org/10.1023/A:1008202821328.
- Sohel, S.I. (2012). Ecohydrological Modelling of a Mediterranean Catchment (Quarteira, Portugal) using SWAT: Model Setup, Calibration and Validation. Magistrsko delo. Kiel University, Department of Hydrology and Water Resources Management, 66 str.
- Stigter, T.Y., Monteiro, J.P., Nunes, L.M., Vieira, J., Cunha, M.C., Ribeiro, L., Nascimento, J., Lucas, H. (2009). Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system. Hydrol. Earth Syst. Sci. 13, 1185–1199. https://doi.org/10.5194/hess-13-1185-2009.
- Škerjanec, M. (2014). Avtomatizirano modeliranje pri celostnem upravljanju z vodnimi viri. Doktorska disertacija. Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, 132 str.
- Škerjanec, M., Atanasova, N., Čerepnalkoski, D., Džeroski, S., Kompare, B., (2014). Development of a knowledge library for automated watershed modeling. Environ. Model. Softw. 54, 60–72. https://doi.org/10.1016/j.envsoft.2013.12.017.
- Tanevski, J., Todorovski, L., Džeroski, S., (2016). Process-based design of dynamical biological systems. Sci. Rep. 6, 34107. https://doi.org/10.1038/srep34107.
- Todorovski, L., Bridewell, W., Shiran, O., Langley, P. (2005). Inducing hierarchical process models in dynamic domains. Proceedings of the 20th National Conference on Artificial Intelligence, Pittsburgh, Pennsylvania, USA, 892–897.
- Van Liew, M.W., Arnold, J.G., Garbrecht, J.D. (2003). Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASABE 46(6), 1539–1551. https://doi.org/10.13031/2013.15643.
- Wang, L., Wang, Z., Liu, C., Bai, P. & Liu, X. (2018). A flexible framework hydroInformatic modeling system – HIMS. Water 10(7), 962. https://doi.org/10.3390/w10070962.
- Whelan, G., Kim, K., Pelton, M.A., Castleton, K.J., Laniak, G.F., Wolfe, K., Parmar, R., Babendreier, J., Galvin, M. (2014). Design of a component-based integrated environmental modeling framework. Environ. Model. Softw. 55, 1–24. https://doi.org/10.1016/j.envsoft.2014.01.016.
- Williams, J.R. (1995). The EPIC model. V: Singh, V.P. (ur.), Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, CO, 909–1000.
- Wischmeier, W.H., Smith, D.D. (1978). Predicting rainfall erosion losses – a guide to conservation planning. USDA, Washington, DC, 58 str.
- Yapo, P.O., Gupta, H.V., Sorooshian, S. (1996). Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. J. Hydrol. 181(1-4), 23–48. https://doi.org/10.1016/0022-1694(95)02918-4.