Automated catchment scale modelling of hydrological phenomena and water quality
Avtomatizirano modeliranje hidroloških pojavov in kakovosti voda na ravni porečij
- Avtorji: Mateja Škerjanec
- Citat: Acta hydrotechnica, vol. 35, no. 62, pp. 1-18, 2022. https://doi.org/10.15292/acta.hydro.2022.01
- Povzetek: V prispevku je predstavljeno avtomatizirano modeliranje hidroloških pojavov in procesov spiranja hranil na ravni porečij, ki omogoča avtomatsko izgradnjo modelov na podlagi domenskega znanja in merjenih podatkov. Osnova za tovrstno modeliranje je domenska knjižnica, v kateri je zbrano znanje s področja hidrološkega modeliranja in modeliranja kakovosti voda, pri čemer so posamezni procesi predstavljeni z alternativnimi enačbami. Formalizem, uporabljen za zapis knjižnice, je kompatibilen z orodjem ProBMoT. Na podlagi knjižnice in opisa izbranega porečja ProBMoT generira vse alternativne strukture modela opazovanega sistema, te pa so avtomatsko umerjene na meritve. Model, ki kaže najmanjše odstopanje med rezultati simulacije modela in meritvami, je izbran kot najboljši model za opis opazovanega sistema. Metodologija je bila aplicirana na porečju reke Quarteire (Algarve, Portugalska). Rezultati analize povprečne letne vodne bilance ter povprečnih letnih obremenitev reke Quarteire s sedimentom in hranili potrjujejo ugotovitve predhodnih raziskav, dobljeni rezultati pa so z vidika natančnosti primerljivi oz. boljši od rezultatov, dobljenih z orodjem SWAT.
- Ključne besede: avtomatizirano modeliranje, ProBMoT, porečje, hidrologija, spiranje hranil, Quarteira.
- Polno besedilo: a35ms.pdf
- Viri:
- Abbaspour, K.C. (2013). SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs – A User Manual. Eawag, Dübendorf, 103 str.
- Arnold, J.G., Fohrer, N. (2005). SWAT2000, current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 19(3), 563–572. https://doi.org/10.1002/hyp.5611.
- Atanasova, N., Todorovski, L., Džeroski, S., Kompare, B. (2006). Constructing a library of domain knowledge for automated modelling of aquatic ecosystems. Ecol. Modell. 194(1-3), 14–36. https://doi.org/10.1016/j.ecolmodel.2005.10.002.
- Behrendt, H., Venohr, M., Hirt, U., Hofmann, J., Opitz, D., Gericke, A. (2007). The model system MONERIS. Version 2.0. User’s manual. Leibniz Institute of Freshwater Ecology and Inland Fisheries in the Forschungsverbund Berlin e.V., Berlin, 117 str.
- Čerepnalkoski, D., Taskova, K., Todorovski, L., Atanasova, N., Džeroski, S. (2012). The influence of parameter fitting methods on model structure selection in automated modelling of aquatic ecosystems. Ecol. Model. 245, 136–165. https://doi.org/10.1016/j.ecolmodel.2012.06.001.
- David, O., Ascough II, J.C., Lloyd, W., Green, T.R., Rojas, K.W., Leavesley, G.H., Ahuja, L.R. (2013). A software engineering perspective on environmental modelling framework design: The Object Modelling System. Environ. Model. Softw. 39, 201–213. https://doi.org/10.1016/j.envsoft.2012.03.006.
- de Kok, J-L., Engelen, G., Maes, J. (2015). Reusability of model components for environmental simulation – Case studies for integrated coastal zone management. Environ. Model. Softw. 68, 42–54. https://doi.org/10.1016/j.envsoft.2015.02.001.
- Driver, N.E., Tasker, G.D. (1990). Techniques for estimation of storm-runoff loads, volumes, and selected constituent concentrations in urban watersheds in the United States. U.S. Government Printing Office, Washington, DC, U.S., 44 str. https://pubs.usgs.gov/wsp/wsp2363/pdf/wsp_2363.pdf (Pridobljeno 27. 1. 2022.)
- Džeroski, S., Todorovski, L. (2003). Learning population dynamics models from data and domain knowledge. Ecol. Model. 170, 129–140. https://doi.org/10.1016/S0304-3800(03)00221-7.
- Haith, D.A., Mandel, R., Shyan Wu, R. (1992). GWLF – Generalized Watershed Loading Functions. Version 2.0. User’s manual. Cornell University, Department of Agricultural & Biological Engineering, Ithaca, NY, 62 str.
- Hamon, W.R. (1961). Estimating Potential Evapotranspiration. Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers 87(3), 107–120. https://doi.org/10.1061/JYCEAJ.0000599.
- Hargreaves, G.L., Hargreaves, G.H., Riley, J.P. (1985). Agricultural benefits for Senegal River Basin. J. Irrig. Drain Eng. 111(2), 113–124. https://doi.org/10.1061/(ASCE)0733-9437(1985)111:2(113).
- Jiang, J., Zhu, A-X., Qin, C-Z., Liu, J. (2019). A knowledge-based method for the automatic determination of hydrological model structures. J. Hydroinformatics 21(6), 1163–1178. https://doi.org/10.2166/hydro.2019.029.
- Laniak, G.F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., Whelan, G., Geller, G., Quinn, N., Blind, M., Peckam, S., Reaney, S., Gaber, N., Kennedey, R., Hughes, A. (2013). Integrated environmental modeling: a vision and roadmap for the future. Environ. Model. Softw. 39, 3–23. https://doi.org/10.1016/j.envsoft.2012.09.006.
- Leavesley, G.H., Markstrom, S.L., Restrepo, P.J., Viger, R.J. (2002). A modular approach to addressing model design, scale, and parameter estimation issues in distributed hydrological modelling. Hydrol. Process. 16, 173–187. https://doi.org/10.1002/hyp.344.
- Liu, J., Zhu, A. X., Qin, C. Z., Wu, H. & Jiang, J. (2016). A two-level parallelization method for distributed hydrological models. Environ. Modell. Softw. 80, 175–184. https://doi.org/10.1016/j.envsoft.2016.02.032.
- Mirsal, I.A. (2008). Soil Pollution. Origin, Monitoring & Remediation. 2nd Edition. Springer, Berlin, Heidelberg: 312 str.
- Monod, J. (1949). The Growth of Bacterial Culture. Annu. Rev. Microbiol. 3, 371–394. http://dx.doi.org/10.1146/annurev.mi.03.100149.002103.
- Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50(3), 885–900. https://doi.org/10.13031/2013.23153.
- Nash, J.E., Sutcliffe, J.V. (1970). River flow forecasting through conceptual models part I – A discussion of principles. J. Hydrol. 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
- NRCS. (1986). Urban Hydrology for Small Watersheds. Technical Release 55. USDA, Washington, DC, 164 str. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf (Pridobljeno 27. 1. 2022.)
- Radinja, M., Škerjanec, M., Džeroski, S., Todorovski, L. Atanasova, N. (2021a). Design and Simulation of Stormwater Control Measures Using Automated Modeling. Water 13, 2268. https://doi.org/10.3390/w13162268.
- Radinja, M., Škerjanec, M., Šraj, M., Džeroski, S., Todorovski, L. Atanasova, N. (2021b). Automated modelling of urban runoff based on domain knowledge and equation discovery. J. Hydrol. 603, 127077. https://doi.org/10.1016/j.jhydrol.2021.127077.
- Rao, L.Y., Sun, G., Ford, C.R., Vose, J.M. (2011). Modelling potential evapotranspiration of two forested watersheds in the southern Appalachians. Trans. ASABE 54(6), 2067–2078. https://doi.org/10.13031/2013.40666.
- Schwarz, G.E., Hoos, A.B., Alexander, R.B., Smith, R.A. (2006). The SPARROW Surface Water Quality Model – Theory, Application and User Documentation. USGS, Reston, VA, 248 str. http://pubs.usgs.gov/tm/2006/tm6b3/PDF.htm (Pridobljeno 27. 1. 2022.)
- Simidjievski, N., Todorovski, L., Kocijan, J., Dzeroski, S., (2020). Equation discovery for nonlinear system identification. IEEE Access 8, 29930–29943. https://doi.org/10.1109/ACCESS.2020.2972076.
- Storn, R., Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Global Optim. 11, 341–359. https://doi.org/10.1023/A:1008202821328.
- Sohel, S.I. (2012). Ecohydrological Modelling of a Mediterranean Catchment (Quarteira, Portugal) using SWAT: Model Setup, Calibration and Validation. Magistrsko delo. Kiel University, Department of Hydrology and Water Resources Management, 66 str.
- Stigter, T.Y., Monteiro, J.P., Nunes, L.M., Vieira, J., Cunha, M.C., Ribeiro, L., Nascimento, J., Lucas, H. (2009). Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system. Hydrol. Earth Syst. Sci. 13, 1185–1199. https://doi.org/10.5194/hess-13-1185-2009.
- Škerjanec, M. (2014). Avtomatizirano modeliranje pri celostnem upravljanju z vodnimi viri. Doktorska disertacija. Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, 132 str.
- Škerjanec, M., Atanasova, N., Čerepnalkoski, D., Džeroski, S., Kompare, B., (2014). Development of a knowledge library for automated watershed modeling. Environ. Model. Softw. 54, 60–72. https://doi.org/10.1016/j.envsoft.2013.12.017.
- Tanevski, J., Todorovski, L., Džeroski, S., (2016). Process-based design of dynamical biological systems. Sci. Rep. 6, 34107. https://doi.org/10.1038/srep34107.
- Todorovski, L., Bridewell, W., Shiran, O., Langley, P. (2005). Inducing hierarchical process models in dynamic domains. Proceedings of the 20th National Conference on Artificial Intelligence, Pittsburgh, Pennsylvania, USA, 892–897.
- Van Liew, M.W., Arnold, J.G., Garbrecht, J.D. (2003). Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASABE 46(6), 1539–1551. https://doi.org/10.13031/2013.15643.
- Wang, L., Wang, Z., Liu, C., Bai, P. & Liu, X. (2018). A flexible framework hydroInformatic modeling system – HIMS. Water 10(7), 962. https://doi.org/10.3390/w10070962.
- Whelan, G., Kim, K., Pelton, M.A., Castleton, K.J., Laniak, G.F., Wolfe, K., Parmar, R., Babendreier, J., Galvin, M. (2014). Design of a component-based integrated environmental modeling framework. Environ. Model. Softw. 55, 1–24. https://doi.org/10.1016/j.envsoft.2014.01.016.
- Williams, J.R. (1995). The EPIC model. V: Singh, V.P. (ur.), Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, CO, 909–1000.
- Wischmeier, W.H., Smith, D.D. (1978). Predicting rainfall erosion losses – a guide to conservation planning. USDA, Washington, DC, 58 str.
- Yapo, P.O., Gupta, H.V., Sorooshian, S. (1996). Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. J. Hydrol. 181(1-4), 23–48. https://doi.org/10.1016/0022-1694(95)02918-4.