Review of hydraulic performance of open‐channel flow‐measuring flumes
- Authors: Davis Sibale, Thomas Apusiga Adongo, Etienne Umkiza, Romain Ntole, Sylvester Chikavumbwa, Erion Bwambale, Zechariah Jeremaiho
- Citation: Acta hydrotechnica, vol. 36, no. 64, pp. 31-55, 2023. https://doi.org/10.15292/acta.hydro.2023.03
- Abstract: The review explored various flumes used for open channel flow measurement and provided insight into operational concepts, discharge measurement, range of flow, head loss requirements, degree of accuracy and submergence, advantages, and limitations for use. The reviewed flumes included; Parshall flumes, Montana flumes, Cutthroat flumes, H-flumes, Trapezoidal flumes, Replogle-Bos-Clemmens (RBC) flumes, Palmer-Bowlus flumes and Central Baffle flumes (CBF). Based on the stage and discharge relationship, the reviewed flumes have a reasonable accuracy of ± 10 % over a wide range of flows. RBC flumes are the most accurate flumes (± 2 %). For flows that deal with a lot of sediments, most flumes have self-cleaning capability except for Palmer-Bowlus flumes and Central Baffle flumes. H-flumes have low resistance to submergence. The submergence transition for H-flumes is only 25-30 %. RBC flumes and Palmer-Bowlus flumes have the highest submergence (90 %). CBF and Palmer-Bowlus flumes need to be improved in order to have self-cleaning capability. Submerged flow corrections need to be developed and published for Palmer-Bowlus flumes and RBC flumes. The reviewed flumes effectively operate with a minimal head loss. The review has provided an insight on selection of an appropriate type of flume for flow measurement in open channels.
- Keywords: Accuracy, discharge, flumes, open channel, self-cleaning, submergence.
- Full text: a36ds.pdf
- References:
- Aali, F., Vatankhah, A. R. (2023). Experimental study of simple flumes with trapezoidal contraction. Flow Measurement and Instrumentation, 90, 102328. https://doi.org/10.1016/j.flowmeasinst.2023.102328
- Abt, S. R., Genovez, A., Florentin, B. (1994). Correction for settlement in submerged Parshall flumes. Journal of Irrigation and Drainage Engineering, 120(3), 676–682. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:3(676).
- Adeogun, A.G, Mohammed, A.A. (2020). Review of Methods of Measuring Streamflow Using Hydraulic Structures. In Hydraulic Structures - Theory and Applications. IntechOpen. https://doi.org/10.5772/intechopen.82342
- Adkins, G.B. (2006). Flow measurement devices. Retrieved from https://waterrights.utah.gov/distinfo/measurement_devices.pdf
- AL-Naely, H., Al-Khafaji, Z., Khassaf, S. (2018). Effect of Opening Holes on the Hydraulic Performance for Crump Weir. International Journal of Engineering (IJE), IJE Transactions C: Aspects 31, 12, 2022-2027. https://doi.org/10.5829/ije.2018.31.12c.05.
- Basu, S. (2019). Open-Channel Flow Measurement. In Plant Flow Measurement and Control Handbook 257–331. Elsevier. https://doi.org/10.1016/B978-0-12-812437-6.00003-2
- Bos, M. G. (1978). Discharge measurement structures. Publication 20: International Institute for Land Reclamation and Improvement (ILRI), The Hague, Wageningen, Netherlands
- Bos, M.G., Replogle, J.A., and A.J. Clemmens, A.J. (1991). Flow Measuring Flumes for Open Channel Systems. American Society of Agricultural Engineers.
- Bijankhan, M., Ferro, V. (2019). Experimental study on triangular central baffle flume. Flow Measurement and Instrumentation. 70. 101641. https://doi.org/10.1016/j.flowmeasinst.2019.101641.
- Bijankhan, M., Teymourkhani, A., Ferro, V. (2022). Portable central baffle flume. Journal of Agricultural Engineering. 53(2). https://doi.org/10.4081/jae.2022.1339.
- Chadwick, A., Morfett, J., Borthwick, M. (2004). Hydraulics in Civil and Environmental Engineering, 4th Edition. Pondicherry, India: Integra Software Services Pvt. Limited.
- Clemmens, A. J., Wahl, T. L., Bos, M. G., and Replogle, J. A. (2001). Water Measurement with Flumes and Weirs.
- Dabrowski, W., Polak, U. (2012). Improvements in Flow Rate Measurements by Flumes. Journal of Hydraulic Engineering, 138(8), 757–763. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000567.
- Das, R., Nayek, M., Das, S., Dutta, P., Mazumdar, A. (2017). Design and analysis of 0.127 m (5″) Cutthroat flume. Ain Shams Engineering Journal, 8(3), 295–303. https://doi.org/10.1016/j.asej.2015.07.017
- Dufresne, M., Vazquez, J. (2013). Head-discharge relationship of Venturi flumes: From long to short throats. Journal of Hydraulic Research, 51, 465–468. https://doi.org/10.1080/00221686.2013.781550.
- Emamgholizadeh, S., Kazemassar, E., Masodi, O. (2009). Comparison between the measured passing discharges through long throated flume and estimated discharge by winflume software. ARPN Journal of Engineering and Applied Sciences, 4.
- FAO (Food and Agriculture Organization of the United Nations). (2020). The State of Food and Agriculture 2020. Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cb1447en.
- Ferro, V. (2016). Simple flume with a central baffle. Flow Measurement and Instrumentation, 52, 53-56, https://doi.org/10.1016/j.flowmeasinst.2016.09.006.
- Figuérez, J. A., González, J., Galán, Á. (2021). Accurate Open Channel Flow rate Estimation Using 2D RANS Modelization and ADCP Measurements. Water, 13, 1772.
- Ghare, A.D., Kapoor, A., Badar, A.M. (2020). Cylindrical Central Baffle Flume for Flow Measurement in Open Channels. Journal of Irrigation and Drainage Engineering, 146, 9, https://doi.org/10.1061/(ASCE)IR.1943-4774.0001499
- Gill, T., and Niblack, M. (2009). Flow Measurement with Long-Throated Flumes under Uncertain Submergence. Irrigation District Sustainability - Strategies to Meet the Challenges.
- Grant, D. M., Dawson, B. D. (2001). Isco open channel flow measurement Handbook (5th edition).
- Gwinn, W. R., Parsons, D. A. (1976). Discharge equations for HS, H, and HL flumes. J. Hydraulics. Division., 102(1), 73-88. https://doi.org/10.1061/JYCEAJ.0004474
- Hager, W. H. (1986). Modified trapezoidal venturi channel. Journal of Irrigation and Drainage Engineering, 112 (3): 225–241. https://doi.org/10.1061/(ASCE)0733-9437(1986)112:3(225).
- Hager, W. H. (2010). Wastewater Hydraulics–Theory and Practice, 2nd edition; Springer‐Verlag: Berlin Heidelberg, Germany, https://doi.org/10.1007/978-3-642-11383-3.
- Heiner, B., and Barfuss, S. L. (2011). Parshall Flume Discharge Corrections: Wall Staff Gauge and Centerline Measurements. Irrigation and Drainage Engineering, 137 (2), 779–792.
- Herb, W., Hernick, M. (2020). An Experimental and Numerical Study of Long-throated Flumes. https://hdl.handle.net/11299/217260.
- Heyrani, M., Mohammadian, A., Nistor, I., and Dursun, O. F. (2022). Application of Numerical and Experimental Modeling to Improve the Efficiency of Parshall Flumes: A Review of the State-of-the-Art. Hydrology, 9(2), 26. https://doi.org/10.3390/hydrology9020026.
- IPCC (Inter-governmental Panel on Climate Change). (2022). Impacts, Adaptation, and Vulnerability. Working Group II contribution to the Sixth Assessment Report.
- Kapoor, A., Ghare, A.D., Vasudeo, A.D., Badar, A.M. (2019). Channel flow measurement using portable conical central baffle, Journal of Irrigation and Drainage Engineering, 145 (11), https://doi.org/10.1061/(ASCE)IR.1943-4774.0001427
- Kapoor, A., Ghare, A.D., Badar, A.M. (2021). CFD Simulations of Conical Central Baffle Flumes. Journal of Irrigation and Drainage Engineering, 148, 2 https://doi.org/10.1061/(ASCE)IR.1943-4774.0001653.
- Kapoor, A., Ghare, A.D., Nair, S. (2023). Modeling of Conical Central Baffle Flumes Using CFD. Fluid Mechanics and Hydraulics. HYDRO 2021. Lecture notes in Civil Engineering, 314. Springer, Singapore. https://doi.org/10.1007/978-981-19-9151-6_11
- Keller, R.J. (1984). Cut-throat flume characteristics. Journal of Hydraulic Engineering, 110(9), 1248–1263.
- Khosronejad, A., Herb, W., Sotiropoulos, F., Kang, S., Yang, X. (2021). Assessment of Parshall flumes for discharge measurement of open-channel flows: A comparative numerical and field case study. Measurement, 167, 108292. https://doi.org/10.1016/j.measurement.2020.108292.
- Kittila, A., Zurich, E. (2019). Weirs and Flumes. Institute of Geophysics, Geothermische Energie. Geofluide. Sonneggstrasse. https://mineclosure.gtk.fi/weirs-and-flumes/
- Kolavani, L.F., Bijankhan, M., Stefano, C.D., Ferro, V., Mazdeh, A.M. (2018). Flow measurement using circular portable flume, Flow Measurement and Instrumentation, 62, 76-83, https://doi.org/10.1016/j.flowmeasinst.2018.05.008.
- Kolavani, F. L., Bijankhan, M., Di Stefano, C., Ferro, V. Mazdeh, A. M. (2019). Experimental study of central baffle flume. Journal of Irrigation and Drainage Engineering 145 (3), 04019002.
- Komiskey, M. J., Stuntebeck, T. D., Cox, A. L., Frame, D. R. (2013). Implications of Flume Slope on Discharge Estimates from 0.762-meter H Flumes Used in Edge-of-Field Monitoring. U.S. Geological Survey Open-File Report, 2013-1082.
- Krupavati, K., Satyanarayana, T.V., Kumar, H.V.H. (2012). Performance Testing of Semi-Circular Contraction Critical Flow Flumes for Field Channels. IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE), ISSN: 2278-1684 Volume 1, Issue 5, PP 01-07 www.iosrjournals.org.
- Luxmi, K. M., Tiwari, A., Tiwari, N. K., Vajesnayee, S. R. (2022). Development and Evaluation of Soft Computing Models for Montana Flume Aeration 167–180. https://doi.org/10.1007/978-3-030-96554-9_12.
- Manekar, V. L., Porey, P. D., Ingle, R. N. (2007). Discharge relation for cutthroat flume under free flow condition. Irrigation and Drainage Engineering, 133(5), 495–499.
- Marr, J., Johnson, S., and Busch, D. (2010). Performance Assessment of H Flumes Under Extreme Approach Flow Conditions, Project Report No. 538. https://conservancy.umn.edu/bitstream/handle/11299/115563/pr538.pdf?sequence=1&isAllwed=y
- Nair, P.S., Ghare, A.D., Kapoor. A. (2023). An Improved Channel Flow Measurement Approach Using Conical Central Baffle Flumes, Research Square, https://doi.org/10.21203/rs.3.rs-2793702/v1.
- Niyazi, H., Yaban, H., Demirel, E. (2022). Structure and dynamics of the turbulent flow through a central baffle, Flow Measurement and Instrumentation, 88, 102248, https://doi.org/10.1016/j.flowmeasinst.2022.102248
- Nordvåg, P. P. (2017). Assessment and Control of Methods for Flow Measurement Systems - Master of Civil and Environmental Engineering, Master thesis, University of Science and Technology (NTNU). http://hdl.handle.net/11250/2454729.
- Ran, D., Wang, W., Hu, X. (2018). Three-dimensional numerical simulation of flow in trapezoidal cutthroat flumes based on FLOW-3D. Frontiers of Agricultural Science and Engineering (5): 168-176. https://doi.org/10.15302/J-FASE-2018217.
- Ribeiro, Á. S., Alves e Sousa, J., Simões, C., Lages Martins, L., Dias, L., Mendes, R., and Martins, C. (2021). Parshall flumes flow rate uncertainty including contributions of the model parameters and correlation effects. Measurement: Sensors, 18, 100108. https://doi.org/10.1016/j.measen.2021.100108.
- Robinson, A. R. (1965). Simplified flow corrections for Parshall flumes, under submerged conditions. Civil Engineering, ASCE, 25(9), 75
- Samani, Z., Magallanez H. (2000). Simple Flume for Flow Measurement in Open Channel. Journal of Irrigation and Drainage Engineering. ASCE, 126(2), 127-129.
- Samani, Z., Magallanez, H., Skaggs, R. (2006). A Simple Flow Measuring Device for Farms. Southern Regional Water Programme, A partnership of USDA CSREES and Land Grant Colleges and Universities.
- Samani, Z. (2017). Three Simple Flumes for Flow Measurement in Open Channels. Journal of Irrigation and Drainage Engineering, 143(6). https://doi.org/10.1061/(ASCE)IR.1943-4774.0001168.
- Saran, D., Tiwari, N. K., Tiwari, N. K. (2020). Parshall Flumes: A Review. Conference: Roorkee Water Conclave 2022 Conference Paper.
- Seth, D., Samani, Z. (2016). Simple Flow Measurement Devices for Open Channels. New Mexico State University. https://nmwrri.nmsu.edu/wpcontent/uploads/2016/Research/swra-2015-16/Davis-FinalReport.pdf.
- Shaw, E. M., Beven, K. J., Chappel, N. A., and Lamb, R. (2011). Hydrology in Practice (4th edition). Spon Press.
- Shayan, H.K., Aminpour, Y., Nikmehr, S. (2021). Discussion of “Cylindrical Central Baffle Flume for Flow Measurement in Open Channels” By Aniruddha D. Ghare, Ankur Kapoor, and Avinash M. Badar. Journal of Irrigation and Drainage Engineering, 147(7): 07021011. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001499.
- Shayannejad, M., Eslamian, S., Gandomkar, A., Marani-Barzani, M., Amoushahi-Khouzani, M., Majidifar, Z., Rajaei-Rizi, F., Kazemi, M., Singh, P. V., Dehghan, S., Shirvani-Dastgerdi, H. R., Norouzi, H., Ostad-Ali-Askari, K. (2017). A Proper Way to Install Trapezoidal Flumes for Measurements in Furrow Irrigation Systems. International Journal of Research Studies in Agricultural Sciences, 3(7). https://doi.org/10.20431/2454-6224.0307001.
- Sitaram, N. (2015). Importance of Flow-metering of Industrial fluids, Effluents and Waste Water for Effective Surface Water Management. International Journal of Engineering Research & Technology (IJERT).
- Skogerboe, G.V., Bennett, R.S., Walker, W.R. (1972). Generalized discharge relation for Cut-throat flumes. Journal of Irrigation and Drainage. Div., 98(4), 569–583.
- Styles, S. W., Downing, B., Winder, W. (2013). Unique Replogle Flume Installations at the Truckee Carson Irrigation District. USCID Seventh International Conference on Irrigation and Drainage, ITRC Paper No. P 13-002. Using 21st Century Technology to Better Manage Irrigation Water Supplies, 11p.
- Sucharitha, Y., Krupavathi, K.,Satyananarayana, T.V., Edukondalu, L. (2020). Development of Circular Flumes for Low Discharge Using Critical Flow Concept. International Journal of Agriculture, Environment and Biotechnology, 13(2): 285-292
- Sun, B., Yang, L., Zhu, S., Liu, Q., Wang, C., Zhang, C. (2021). Study on the applicability of four flumes in small rectangular channels. Flow Measurement and Instrumentation, 80, 101967. https://doi.org/10.1016/j.flowmeasinst.2021.101967.
- Tekade, S. A., Vasudeo, A. D., Ghare, A. D., Ingle, R. N. (2016). Dimensionless Discharge in Supercritical Flow Regime for Different Sizes of Cutthroat Flumes. Arabian Journal for Science and Engineering, 41(10), 4235–4245. https://doi.org/10.1007/s13369-016-2114-6.
- Temeepattanapongsa, S. (2012). Unified Rating Equations for Cutthroat Flumes Derived from a Three-Dimensional Hydraulic Model". Dissertation, Utah state University. https://digitalcommons.usu.edu/etd/1308.
- Temeepattanapongsa, S., Merkley, G. P., Barfuss, S. L., and Smith, B. L. (2013). Generic Free-Flow Rating for Cutthroat Flumes. Journal of Hydraulic Engineering, 139(7), 727–735. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000732.
- Temeepattanapongsa, S., Merkley, G. P., Barfuss, S. L., Smith, B. L. (2014). Generic unified rating for Cutthroat flumes. Irrigation Science, 32: 29–40. https://doi.org/10.1007/s00271-013-0411-3.
- Todeschini, S., Manenti, S., Volponi, F., Ciaponi, C. (2020). Analytical Methodology for the Discharge-Stage Relation of Flexible Shape Palmer-Bowlus Flumes. Journal of Irrigation and Drainage Engineering, 146(8). https://doi.org/10.1061/(ASCE)IR.1943-4774.0001486
- Torres, A. F., Merkley, G. P. (2008). Cut‐throat measurement flume calibration for free and submerged flow using
- a single equation. Journal of Irrigation and Drainage Engineering, 134(4), 521–526. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:4(521).
- Tulip, S., Islam, M., Shoshi, U., Islam, M. T. (2018). Design and Performance Evaluation of an H-Flume. 29.
- USBR (United States Bureau of Reclamation). (2001). Water Measurement Manual. Revised reprint.U.S. Government. Printing Office.
- Vanani, H. R., Ostad-Ali-Askari, K. (2022). Correct path to use flumes in water resources management. Applied Water Science, 12(8), 187. https://doi.org/10.1007/s13201-022-01702-7.
- Wahl, T. L., Clemmens, A. J., Replogle, J. A., Bos, M. G. (2005). Simplified design of Flumes and Weirs. Irrigation and Drainage, 54, 231–247.
- Walkowiak, D. K. (2006). ISCO Open Channel Flow Measurement Handbook: Teledyne Isco. https://www.abebooks.com/Isco-Open-Channel-FlowMeasurement Handbook/31345544669/bd
- Willeitner, R. P., Barfuss, S. L., Johnson, M. C. (2012). Montana Flume Flow Corrections under Submerged Flow. Journal of Irrigation and Drainage Engineering, 138(7), 685–689. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000434.
- Yarahmadi, N., Vatankhah, A. R. (2021). Experimental study on rectangular Cutthroated flume: Effects of flume walls slopes and channel longitudinal slope. Flow Measurement and Instrumentation, 79, 101919. https://doi.org/10.1016/j.flowmeasinst.2021.101919.
- Zerihun, Y. T. (2019), Curved‐streamline open channel flows in throatless flow‐measuring flumes, Water Utility Journal, 23, 11–26.