Review of hydraulic performance of open‐channel flow‐measuring flumes
Pregled hidravličnih razmer pri koritih za merjenje pretoka v vodotokih
- Avtorji: Davis Sibale, Thomas Apusiga Adongo, Etienne Umkiza, Romain Ntole, Sylvester Chikavumbwa, Erion Bwambale, Zechariah Jeremaiho
- Citat: Acta hydrotechnica, vol. 36, no. 64, pp. 31-55, 2023. https://doi.org/10.15292/acta.hydro.2023.03
- Povzetek: Članek obravnava različna korita, ki se uporabljajo za merjenje pretoka pri toku s prosto gladino, podaja vpogled v zasnovo meritev in izračuna pretoka, obravnava natančnost in dopustno stopnjo potopljenosti, ter prednosti in omejitve pri uporabi posameznih korit. Obravnavana so Parshallova korita, korita Montana, korita Cutthroat, H-korita, trapezna korita, Replogle-Bos-Clemmensova (RBC) korita, Palmer-Bowlusova korita in korita s sredinsko oviro (CBF). Če delujejo korita v ustreznih pogojih, lahko merijo pretok z natančnostjo do ±10 %. Korita RBC so najbolj natančna (±2 %). Večina korit ima sposobnost samočiščenja pri tokovih z veliko sedimenti, razen Palmer-Bowlusovih korit in korit CBF. Najmanjšo dovoljeno potopljenost imajo H-korita (25 do 30 %), največjo dovoljeno potopljenost (do 90 %) pa korita RBC in Palmer-Bowlusova korita. Ugotovljeno je, da je treba korita CBF in Palmer-Bowlusova korita spremeniti, če naj bi ta imela samočistilno sposobnost. Za Palmer-Bowlusova korita in korita RBC pa je treba raziskati in objaviti način določanja pretoka v pogojih potopljenosti. Pregledana korita so učinkovita z minimalno izgubo energije. Prikazan je tudi pregled zahtev za pravilno izbiro korita glede na terenske razmere in posebne zahteve ob vgradnji korit.
- Ključne besede: Natančnost, pretok, merilna korita, tok s prosto gladino, samočiščenje, potopljenost.
- Polno besedilo: a36ds.pdf
- Viri:
- Aali, F., Vatankhah, A. R. (2023). Experimental study of simple flumes with trapezoidal contraction. Flow Measurement and Instrumentation, 90, 102328. https://doi.org/10.1016/j.flowmeasinst.2023.102328
- Abt, S. R., Genovez, A., Florentin, B. (1994). Correction for settlement in submerged Parshall flumes. Journal of Irrigation and Drainage Engineering, 120(3), 676–682. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:3(676).
- Adeogun, A.G, Mohammed, A.A. (2020). Review of Methods of Measuring Streamflow Using Hydraulic Structures. In Hydraulic Structures - Theory and Applications. IntechOpen. https://doi.org/10.5772/intechopen.82342
- Adkins, G.B. (2006). Flow measurement devices. Retrieved from https://waterrights.utah.gov/distinfo/measurement_devices.pdf
- AL-Naely, H., Al-Khafaji, Z., Khassaf, S. (2018). Effect of Opening Holes on the Hydraulic Performance for Crump Weir. International Journal of Engineering (IJE), IJE Transactions C: Aspects 31, 12, 2022-2027. https://doi.org/10.5829/ije.2018.31.12c.05.
- Basu, S. (2019). Open-Channel Flow Measurement. In Plant Flow Measurement and Control Handbook 257–331. Elsevier. https://doi.org/10.1016/B978-0-12-812437-6.00003-2
- Bos, M. G. (1978). Discharge measurement structures. Publication 20: International Institute for Land Reclamation and Improvement (ILRI), The Hague, Wageningen, Netherlands
- Bos, M.G., Replogle, J.A., and A.J. Clemmens, A.J. (1991). Flow Measuring Flumes for Open Channel Systems. American Society of Agricultural Engineers.
- Bijankhan, M., Ferro, V. (2019). Experimental study on triangular central baffle flume. Flow Measurement and Instrumentation. 70. 101641. https://doi.org/10.1016/j.flowmeasinst.2019.101641.
- Bijankhan, M., Teymourkhani, A., Ferro, V. (2022). Portable central baffle flume. Journal of Agricultural Engineering. 53(2). https://doi.org/10.4081/jae.2022.1339.
- Chadwick, A., Morfett, J., Borthwick, M. (2004). Hydraulics in Civil and Environmental Engineering, 4th Edition. Pondicherry, India: Integra Software Services Pvt. Limited.
- Clemmens, A. J., Wahl, T. L., Bos, M. G., and Replogle, J. A. (2001). Water Measurement with Flumes and Weirs.
- Dabrowski, W., Polak, U. (2012). Improvements in Flow Rate Measurements by Flumes. Journal of Hydraulic Engineering, 138(8), 757–763. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000567.
- Das, R., Nayek, M., Das, S., Dutta, P., Mazumdar, A. (2017). Design and analysis of 0.127 m (5″) Cutthroat flume. Ain Shams Engineering Journal, 8(3), 295–303. https://doi.org/10.1016/j.asej.2015.07.017
- Dufresne, M., Vazquez, J. (2013). Head-discharge relationship of Venturi flumes: From long to short throats. Journal of Hydraulic Research, 51, 465–468. https://doi.org/10.1080/00221686.2013.781550.
- Emamgholizadeh, S., Kazemassar, E., Masodi, O. (2009). Comparison between the measured passing discharges through long throated flume and estimated discharge by winflume software. ARPN Journal of Engineering and Applied Sciences, 4.
- FAO (Food and Agriculture Organization of the United Nations). (2020). The State of Food and Agriculture 2020. Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cb1447en.
- Ferro, V. (2016). Simple flume with a central baffle. Flow Measurement and Instrumentation, 52, 53-56, https://doi.org/10.1016/j.flowmeasinst.2016.09.006.
- Figuérez, J. A., González, J., Galán, Á. (2021). Accurate Open Channel Flow rate Estimation Using 2D RANS Modelization and ADCP Measurements. Water, 13, 1772.
- Ghare, A.D., Kapoor, A., Badar, A.M. (2020). Cylindrical Central Baffle Flume for Flow Measurement in Open Channels. Journal of Irrigation and Drainage Engineering, 146, 9, https://doi.org/10.1061/(ASCE)IR.1943-4774.0001499
- Gill, T., and Niblack, M. (2009). Flow Measurement with Long-Throated Flumes under Uncertain Submergence. Irrigation District Sustainability - Strategies to Meet the Challenges.
- Grant, D. M., Dawson, B. D. (2001). Isco open channel flow measurement Handbook (5th edition).
- Gwinn, W. R., Parsons, D. A. (1976). Discharge equations for HS, H, and HL flumes. J. Hydraulics. Division., 102(1), 73-88. https://doi.org/10.1061/JYCEAJ.0004474
- Hager, W. H. (1986). Modified trapezoidal venturi channel. Journal of Irrigation and Drainage Engineering, 112 (3): 225–241. https://doi.org/10.1061/(ASCE)0733-9437(1986)112:3(225).
- Hager, W. H. (2010). Wastewater Hydraulics–Theory and Practice, 2nd edition; Springer‐Verlag: Berlin Heidelberg, Germany, https://doi.org/10.1007/978-3-642-11383-3.
- Heiner, B., and Barfuss, S. L. (2011). Parshall Flume Discharge Corrections: Wall Staff Gauge and Centerline Measurements. Irrigation and Drainage Engineering, 137 (2), 779–792.
- Herb, W., Hernick, M. (2020). An Experimental and Numerical Study of Long-throated Flumes. https://hdl.handle.net/11299/217260.
- Heyrani, M., Mohammadian, A., Nistor, I., and Dursun, O. F. (2022). Application of Numerical and Experimental Modeling to Improve the Efficiency of Parshall Flumes: A Review of the State-of-the-Art. Hydrology, 9(2), 26. https://doi.org/10.3390/hydrology9020026.
- IPCC (Inter-governmental Panel on Climate Change). (2022). Impacts, Adaptation, and Vulnerability. Working Group II contribution to the Sixth Assessment Report.
- Kapoor, A., Ghare, A.D., Vasudeo, A.D., Badar, A.M. (2019). Channel flow measurement using portable conical central baffle, Journal of Irrigation and Drainage Engineering, 145 (11), https://doi.org/10.1061/(ASCE)IR.1943-4774.0001427
- Kapoor, A., Ghare, A.D., Badar, A.M. (2021). CFD Simulations of Conical Central Baffle Flumes. Journal of Irrigation and Drainage Engineering, 148, 2 https://doi.org/10.1061/(ASCE)IR.1943-4774.0001653.
- Kapoor, A., Ghare, A.D., Nair, S. (2023). Modeling of Conical Central Baffle Flumes Using CFD. Fluid Mechanics and Hydraulics. HYDRO 2021. Lecture notes in Civil Engineering, 314. Springer, Singapore. https://doi.org/10.1007/978-981-19-9151-6_11
- Keller, R.J. (1984). Cut-throat flume characteristics. Journal of Hydraulic Engineering, 110(9), 1248–1263.
- Khosronejad, A., Herb, W., Sotiropoulos, F., Kang, S., Yang, X. (2021). Assessment of Parshall flumes for discharge measurement of open-channel flows: A comparative numerical and field case study. Measurement, 167, 108292. https://doi.org/10.1016/j.measurement.2020.108292.
- Kittila, A., Zurich, E. (2019). Weirs and Flumes. Institute of Geophysics, Geothermische Energie. Geofluide. Sonneggstrasse. https://mineclosure.gtk.fi/weirs-and-flumes/
- Kolavani, L.F., Bijankhan, M., Stefano, C.D., Ferro, V., Mazdeh, A.M. (2018). Flow measurement using circular portable flume, Flow Measurement and Instrumentation, 62, 76-83, https://doi.org/10.1016/j.flowmeasinst.2018.05.008.
- Kolavani, F. L., Bijankhan, M., Di Stefano, C., Ferro, V. Mazdeh, A. M. (2019). Experimental study of central baffle flume. Journal of Irrigation and Drainage Engineering 145 (3), 04019002.
- Komiskey, M. J., Stuntebeck, T. D., Cox, A. L., Frame, D. R. (2013). Implications of Flume Slope on Discharge Estimates from 0.762-meter H Flumes Used in Edge-of-Field Monitoring. U.S. Geological Survey Open-File Report, 2013-1082.
- Krupavati, K., Satyanarayana, T.V., Kumar, H.V.H. (2012). Performance Testing of Semi-Circular Contraction Critical Flow Flumes for Field Channels. IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE), ISSN: 2278-1684 Volume 1, Issue 5, PP 01-07 www.iosrjournals.org.
- Luxmi, K. M., Tiwari, A., Tiwari, N. K., Vajesnayee, S. R. (2022). Development and Evaluation of Soft Computing Models for Montana Flume Aeration 167–180. https://doi.org/10.1007/978-3-030-96554-9_12.
- Manekar, V. L., Porey, P. D., Ingle, R. N. (2007). Discharge relation for cutthroat flume under free flow condition. Irrigation and Drainage Engineering, 133(5), 495–499.
- Marr, J., Johnson, S., and Busch, D. (2010). Performance Assessment of H Flumes Under Extreme Approach Flow Conditions, Project Report No. 538. https://conservancy.umn.edu/bitstream/handle/11299/115563/pr538.pdf?sequence=1&isAllwed=y
- Nair, P.S., Ghare, A.D., Kapoor. A. (2023). An Improved Channel Flow Measurement Approach Using Conical Central Baffle Flumes, Research Square, https://doi.org/10.21203/rs.3.rs-2793702/v1.
- Niyazi, H., Yaban, H., Demirel, E. (2022). Structure and dynamics of the turbulent flow through a central baffle, Flow Measurement and Instrumentation, 88, 102248, https://doi.org/10.1016/j.flowmeasinst.2022.102248
- Nordvåg, P. P. (2017). Assessment and Control of Methods for Flow Measurement Systems - Master of Civil and Environmental Engineering, Master thesis, University of Science and Technology (NTNU). http://hdl.handle.net/11250/2454729.
- Ran, D., Wang, W., Hu, X. (2018). Three-dimensional numerical simulation of flow in trapezoidal cutthroat flumes based on FLOW-3D. Frontiers of Agricultural Science and Engineering (5): 168-176. https://doi.org/10.15302/J-FASE-2018217.
- Ribeiro, Á. S., Alves e Sousa, J., Simões, C., Lages Martins, L., Dias, L., Mendes, R., and Martins, C. (2021). Parshall flumes flow rate uncertainty including contributions of the model parameters and correlation effects. Measurement: Sensors, 18, 100108. https://doi.org/10.1016/j.measen.2021.100108.
- Robinson, A. R. (1965). Simplified flow corrections for Parshall flumes, under submerged conditions. Civil Engineering, ASCE, 25(9), 75
- Samani, Z., Magallanez H. (2000). Simple Flume for Flow Measurement in Open Channel. Journal of Irrigation and Drainage Engineering. ASCE, 126(2), 127-129.
- Samani, Z., Magallanez, H., Skaggs, R. (2006). A Simple Flow Measuring Device for Farms. Southern Regional Water Programme, A partnership of USDA CSREES and Land Grant Colleges and Universities.
- Samani, Z. (2017). Three Simple Flumes for Flow Measurement in Open Channels. Journal of Irrigation and Drainage Engineering, 143(6). https://doi.org/10.1061/(ASCE)IR.1943-4774.0001168.
- Saran, D., Tiwari, N. K., Tiwari, N. K. (2020). Parshall Flumes: A Review. Conference: Roorkee Water Conclave 2022 Conference Paper.
- Seth, D., Samani, Z. (2016). Simple Flow Measurement Devices for Open Channels. New Mexico State University. https://nmwrri.nmsu.edu/wpcontent/uploads/2016/Research/swra-2015-16/Davis-FinalReport.pdf.
- Shaw, E. M., Beven, K. J., Chappel, N. A., and Lamb, R. (2011). Hydrology in Practice (4th edition). Spon Press.
- Shayan, H.K., Aminpour, Y., Nikmehr, S. (2021). Discussion of “Cylindrical Central Baffle Flume for Flow Measurement in Open Channels” By Aniruddha D. Ghare, Ankur Kapoor, and Avinash M. Badar. Journal of Irrigation and Drainage Engineering, 147(7): 07021011. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001499.
- Shayannejad, M., Eslamian, S., Gandomkar, A., Marani-Barzani, M., Amoushahi-Khouzani, M., Majidifar, Z., Rajaei-Rizi, F., Kazemi, M., Singh, P. V., Dehghan, S., Shirvani-Dastgerdi, H. R., Norouzi, H., Ostad-Ali-Askari, K. (2017). A Proper Way to Install Trapezoidal Flumes for Measurements in Furrow Irrigation Systems. International Journal of Research Studies in Agricultural Sciences, 3(7). https://doi.org/10.20431/2454-6224.0307001.
- Sitaram, N. (2015). Importance of Flow-metering of Industrial fluids, Effluents and Waste Water for Effective Surface Water Management. International Journal of Engineering Research & Technology (IJERT).
- Skogerboe, G.V., Bennett, R.S., Walker, W.R. (1972). Generalized discharge relation for Cut-throat flumes. Journal of Irrigation and Drainage. Div., 98(4), 569–583.
- Styles, S. W., Downing, B., Winder, W. (2013). Unique Replogle Flume Installations at the Truckee Carson Irrigation District. USCID Seventh International Conference on Irrigation and Drainage, ITRC Paper No. P 13-002. Using 21st Century Technology to Better Manage Irrigation Water Supplies, 11p.
- Sucharitha, Y., Krupavathi, K.,Satyananarayana, T.V., Edukondalu, L. (2020). Development of Circular Flumes for Low Discharge Using Critical Flow Concept. International Journal of Agriculture, Environment and Biotechnology, 13(2): 285-292
- Sun, B., Yang, L., Zhu, S., Liu, Q., Wang, C., Zhang, C. (2021). Study on the applicability of four flumes in small rectangular channels. Flow Measurement and Instrumentation, 80, 101967. https://doi.org/10.1016/j.flowmeasinst.2021.101967.
- Tekade, S. A., Vasudeo, A. D., Ghare, A. D., Ingle, R. N. (2016). Dimensionless Discharge in Supercritical Flow Regime for Different Sizes of Cutthroat Flumes. Arabian Journal for Science and Engineering, 41(10), 4235–4245. https://doi.org/10.1007/s13369-016-2114-6.
- Temeepattanapongsa, S. (2012). Unified Rating Equations for Cutthroat Flumes Derived from a Three-Dimensional Hydraulic Model". Dissertation, Utah state University. https://digitalcommons.usu.edu/etd/1308.
- Temeepattanapongsa, S., Merkley, G. P., Barfuss, S. L., and Smith, B. L. (2013). Generic Free-Flow Rating for Cutthroat Flumes. Journal of Hydraulic Engineering, 139(7), 727–735. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000732.
- Temeepattanapongsa, S., Merkley, G. P., Barfuss, S. L., Smith, B. L. (2014). Generic unified rating for Cutthroat flumes. Irrigation Science, 32: 29–40. https://doi.org/10.1007/s00271-013-0411-3.
- Todeschini, S., Manenti, S., Volponi, F., Ciaponi, C. (2020). Analytical Methodology for the Discharge-Stage Relation of Flexible Shape Palmer-Bowlus Flumes. Journal of Irrigation and Drainage Engineering, 146(8). https://doi.org/10.1061/(ASCE)IR.1943-4774.0001486
- Torres, A. F., Merkley, G. P. (2008). Cut‐throat measurement flume calibration for free and submerged flow using
- a single equation. Journal of Irrigation and Drainage Engineering, 134(4), 521–526. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:4(521).
- Tulip, S., Islam, M., Shoshi, U., Islam, M. T. (2018). Design and Performance Evaluation of an H-Flume. 29.
- USBR (United States Bureau of Reclamation). (2001). Water Measurement Manual. Revised reprint.U.S. Government. Printing Office.
- Vanani, H. R., Ostad-Ali-Askari, K. (2022). Correct path to use flumes in water resources management. Applied Water Science, 12(8), 187. https://doi.org/10.1007/s13201-022-01702-7.
- Wahl, T. L., Clemmens, A. J., Replogle, J. A., Bos, M. G. (2005). Simplified design of Flumes and Weirs. Irrigation and Drainage, 54, 231–247.
- Walkowiak, D. K. (2006). ISCO Open Channel Flow Measurement Handbook: Teledyne Isco. https://www.abebooks.com/Isco-Open-Channel-FlowMeasurement Handbook/31345544669/bd
- Willeitner, R. P., Barfuss, S. L., Johnson, M. C. (2012). Montana Flume Flow Corrections under Submerged Flow. Journal of Irrigation and Drainage Engineering, 138(7), 685–689. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000434.
- Yarahmadi, N., Vatankhah, A. R. (2021). Experimental study on rectangular Cutthroated flume: Effects of flume walls slopes and channel longitudinal slope. Flow Measurement and Instrumentation, 79, 101919. https://doi.org/10.1016/j.flowmeasinst.2021.101919.
- Zerihun, Y. T. (2019), Curved‐streamline open channel flows in throatless flow‐measuring flumes, Water Utility Journal, 23, 11–26.