Factors affecting variations in the hydrological cycle at different temporal and spatial scales
- Authors: Ognjen Bonacci
- Citation: Acta hydrotechnica, vol. 36, no. 64, pp. 1-15, 2023. https://doi.org/10.15292/acta.hydro.2023.01
- Abstract: The climate is changing intensively, causing major variations in the local, regional, and eventually global hydrological cycle. Furthermore, climate changes strongly affect individual components of the hydrological cycle. The prevailing present-day opinion is that climate change is primarily caused by anthropogenic production of CO2. This assumption is automatically accepted as the main reason or at least a contributory cause of changes in the hydrological cycle. However, changes in hydrological cycle appear to be a significantly more complex problem. At the same time, various other processes take place on different temporal and spatial scales. The article discusses numerous natural and human-caused factors that can affect changes in the hydrological cycle. When considering the factors that affect the planetary hydrological cycle on any temporal or spatial scale, it is necessary to consider many potential causes and understand their interactions. The natural factors discussed in this paper are Milanković cycles, Wolf number, Hurst phenomenon, earthquakes, volcanoes, and meteorite impacts. Among the anthropogenic influences, the role of dams and reservoirs is emphasized.
- Keywords: Hydrological processes, Milanković cycles, volcanoes, El Niño and La Niña, earthquakes, Wolf number, Hurst phenomenon, dams and reservoirs.
- Full text: a36ob.pdf
- References:
- Aquila, V., Swartz, W. H., Waugh, D. W., Colarco, P. R., Pawson, S., Polvani, L. M., Stolarski, R. S. (2016). Isolating the roles of different forcing agents in global stratospheric temperature changes using model integrations with incrementally added single forcings. Journal of Geophysical Research: Atmospheres, 121(13), 8067–8082. https://doi.org/10.1002/2015JD023841.
- Berbić, J. (2017). Model upravljanja hidrotehničkim sustavima pomoću predviđanja nadziranim učenjem. Disertacija, Građevinski fakultet Sveučilišta u Zagrebu, Zagreb.
- Berga, L. (2016). The role of hydropower in climate change mitigation and adaptation: a review, Engineering, 2(3), 313–318. https://doi.org/10.1016/J.ENG.2016.03.004.
- Biswas, A. K. (2004). Dams: cornucopia or disaster? International Journal of Water Resources Development, 20(1), 3-14. https://doi.org/10.1080/0790062032000170571.
- Bonacci, O. (2014). Utjecaj erupcija vulkana na klimu. Hrvatske Vode, 22(90), 347–351.
- Bonacci, O. (2015). Podnebne spremembe – dvomi iz preteklosti in sedanjosti – Climate changes – dilemmas from the past and the present. Acta Hydrotechnica, 28(48), 39–47.
- Bonacci, O. (2016). Špilje u kršu kao mjesta koja sadržavaju brojne i značajne informacije ključne za razumijevanje prošlosti i korisne za sadašnjost i budućnost. Hrvatske Vode, 24(97), 233–240.
- Bonacci, O., Đurin, B., Roje-Bonacci, T., Bonacci, D. (2022). The influence of reservoirs on water temperature in the downstream part of an open watercourse: a case study at Botovo Station on the Drava River. Water, 14(21), 3534; https://doi.org/10.3390/w14213534
- Bonacci, O., Oskoruš, D. (2010). The changes in the lower Drava River water level, discharge and suspended sediment regime. Environmental Earth Sciences, 59(8), 1661–1670. https://doi.org/10.1007/s12665-009-0148-8.
- Bonacci, O., Roje-Bonacci, T. (2022). Dileme vezane uz gradnju velikih brana: slučaj rijeke Nil. Hrvatske Vode, 30(120), 135–145.
- Boretti, A., Rosa, L. (2019). Reassessing the projections of the World Water Development Report. Clean Water, 2, 15. https://doi.org/10.1038/s41545-019-0039-9.
- Clottes, J. (2001). La Grotte Chauvet. L’art des origines. Seuil Edition, Paris
- Cole-Dai, J. (2010). Volcanoes and climate. Wiley Interdisciplinary Reviews: Climate Change, 1(6), 824-839. https://doi.org/10.1002/wcc.76.
- Čalogović, J. (2014). Utjecaj sunčeve aktivnosti na zemljin svemirski okoliš i klimu. Disertacija, Prirodoslovno matematički fakultet Sveučilišta u Zagrebu, Zagreb.
- Dai, Z.; Chu, A., Stive, M., Du, J., Li, J. (2011). Is the Three Gorges Dam the cause behind the extremely low suspended sediment discharge into the Yangtze (Changjiang) estuary of 2006? Hydrological Sciences Journal, 56(7), 1280–1288. https://doi.org/10.1080/02626667.2011.585136.
- Di Matteo, L., Dragoni, W., Azzaro, S., Pauselli, C., Porreca, M., Bellina, G., Cardaci, W. (2020). Effects of earthquakes on the discharge of groundwater systems: The case of the 2016 seismic sequence in the Central Apennines, Italy. Journal of Hydrology, 583, 124509. https://doi.org/10.1016/j.jhydrol.2019.124509.
- Easterbrook, D. J. (2016). Evidence-based climate science, data opposing CO2 emissions as the primary source of global warming 2nd Ed., Bellingham, USA, https://doi.org/10.1016/C2015-0-02097-4.
- Fendeková, M., Pekárová, P., Fendek, M., Pekár, J., Škoda, Š. (2014). Global drivers effect in multi-annual variability of runoff. Journal of Hydrology and Hydromechanics, 62(3), 169–176. https://doi.org/10.2478/johh-2014-0027.
- Friis-Christensen, E., Lassen, K. (1991). Length of the solar cycle: an indicator of solar activity closely associated with climate. Science, 254, 698–700. https://doi.org/10.1126/science.254.5032.698.
- Gosar, A., Brenčič, M. (2012). Possible relation between the sudden sinking of river Iška and the sequence of weak earthquakes in September-October 2010 near Iška vas (central Slovenia). Acta Carsologica 41(2-3), 266–274. https://doi.org/10.3986/ac.v41i2-3.563.
- Grahovac, D., Grgić, L. (2019). Dugoročna zavisnost. Osječki Matematički List, 19, 15–29.
- Horvat, A., Brilly, M., Kryžanowski, A. (2006). Vpliv izgradnje hidroenergetskih objektov na vodni režim - The impact of hydropower plants on the water regime). Acta Hydrotechnica, 24(41), 47–66.
- Hudek, H., Žganec, K., Pusch, M. T. (2020). A review of hydropower dams in Southeast Europe – distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea. Renewable and Sustainable Energy Reviews, 117, 109434. https://doi.org/10.1016/j.rser.2019.109434.
- Hund, S. V., Grossmann, I., Steyn, D. G., Allen, D. M.; Johnson, M. S. (2021). Changing water resources under El Niño, climate change, and growing water demands in seasonally dry tropical watersheds. Water Resources Research, 57(11), https://doi.org/10.1029/2020WR028535.
- Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116(1), 770-799. https://doi.org/10.1061/TACEAT.0006518.
- Hurst H. E. (1956). The problem of long-term storage in reservoirs. Hydrological Sciences Journal, 1(3), 13-27. https://doi.org/10.1080/02626665609493644.
- Hurst, H. E.; Black, R. P.; Simaika, Y. M. (1965). Long-term storage: an experimental study. Constable, London.
- Issar, A. S. (2003.) Climate changes during the Holocene and their impact on hydrological systems. UNESCO & Cambridge University Press. Cambridge. https://doi.org/10.1017/CBO9780511535703.007.
- Jánosi, I. M., Bíró, T., Lakatos, B. O., Gallas, J. A. C.; Szöllosi-Nagy, A. (2023). Changing water cycle under a warming climate: tendencies in the Carpathian Basin. Climate, 11(6), 118. https://doi.org/10.3390/cli11060118.
- Komitov, B., Kaftan, V. (2004). The sunspot activity in the last two millennia on the basis of indirect and instrumental indexes: time series models and their extrapolations for the 21st century, Proceedings of the International Astronomical Union, 2004(IAUS223). https://doi.org/10.1017/S1743921304005307.
- Kopp, G., Krivova, N., Wu, C. J., Lean, J. (2016). The Impact of the Revised Sunspot Record on Solar Irradiance Reconstructions. Solar Physics, 291(9–10), 2951–2965. https://doi.org/10.1007/s11207-016-0853-x.
- Koutsoyiannis, D. (2003). Climate change, the Hurst phenomenon, and hydrological statistics. Hydrological Sciences Journal, 48(1), 3-24. https://doi.org/10.1623/hysj.48.1.3.43481.
- Kumar, P., Singh, D. P. (2019). Solar cycle variability and global climate change. Journal of Earth Science and Climatic Change, 10(4), 1000514. https://doi.org/10.4172/2157-7617.1000514.
- Lacanette, D., Malaurent, P., Caltagirone, J.P., Brunet, J. (2007). Etude des transferts de masse et de chaleur dans la grotte de Lascaux: le suivi climatique et le simulater. Karstologia, 50: 19-30.
- Lerman, J. C., Mook, W. G., Vogel, J. C. (1967). Effect of the Tunguska meteor and sunspots on radiocarbon in tree rings. Nature, 216 (5119), 990–991.
- Leroux, M. (2005). Global warming - myth or reality?: the erring ways of climatology. Springer, Berlin
- Lewis, S. L., Maslin, M. A. (2015). Defining the Anthropocene. Nature, 519, 171-179. https://doi.org/10.1038/nature14258.
- Ljungqvist, F.C., Krusic, P. J., Sundqvist, H. S., Zorita, E., Brattström, G., Frank, D. (2016). Northern hemisphere hydroclimate variability over the past twelve centuries. Nature 532(7597), 94–98. https://doi.org/10.1038/nature17418.
- Maeck. A., DelSontro, T., McGinnis, D. F., Fischer, H., Flury, S., Schmidt, M., Fietzek, P., Lorke, A. (2013). Sediment trapping by dams creates methane emission hot spots. Environmental Science and Technology, 47(15), 8130–8137. https://doi.org/10.1021/es4003907.
- Meissner, R. (2002). The impact of El Nino on water resources. Encyclopedia of Life Support Systems (EOLSS) (ur. van Wyk, J.-A.; Meissner, R.; Jacobs, H.), 1–17, UNESCO, Paris.
- Mikoš, M., Četina, M., Brilly, M. (2004). Hydrologic conditions responsible for triggering the Stože landslide, Slovenia. Engineering Geology 73(3-4), 193–213. https://doi.org/10.1016/j.enggeo.2004.01.011.
- Miyakoshi, A., Taniguchi, M., Ide, K., Kagabu, M., Hosono, T.,Shimada, J. (2020). Identification of changes in subsurface temperature and groundwater flow after the 2016 Kumamoto earthquake using long-term well temperature–depth profiles. Journal of Hydrology, 582, 124530. https://doi.org/10.1016/j.jhydrol.2019.124530.
- Muller, M. (2019). Dams have the power to slow climate change. Nature, 566(7744), 315–317. https://doi.org/10.1038/d41586-019-00616-w.
- Nesvetajlo, V. D. (1998). Consequences of the Tunguska catastrophe: dendrochronoindication inferences. Planetary and Space Science, 46(2–3), 155–161. https://doi.org/10.1016/S0032-0633(97)00144-X.
- Ocko, I. B., Hamburg, S. P. (2019). Climate impacts of hydropower: enormous differences among facilities and over time. Environmental Science & Technology, 53(23), 14070–14082. https://doi.org/10.1021/acs.est.9b05083.
- Ol'khovatov, A. Y. (2003). Geophysical circumstances of the 1908 Tunguska event in Siberia, Russia. Earth, Moon and Planets, 93(3), 163–173. https://doi.org/10.1023/B:MOON.0000047474.85788.01.
- Pachur, H. J., Kröpelin, S. (1987). Wadi Howar: paleoclimatic evidence from an extinct river system in the southeastern Sahara. Science, 237(4812), 298–300. https://doi.org/10.1126/science.237.4812.298.
- Palmeirim, A. F., Peres, C. A., Rosas, F. C. (2014). Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam. Biological Conservation, 174, 30–38. https://doi.org/10.1016/j.biocon.2014.03.015.
- Pratap, S., Markonis, Y. (2022). The response of the hydrological cycle to temperature changes in recent and distant climatic history. Progress in Earth and Planetary Science, 9, 30. https://doi.org/10.1186/s40645-022-00489-0.
- Rind, D. (2002). The Sun`s role in climate variations. Science, 296(5568), 673–677. https://doi.org/10.1126/science.1069562.
- Robock, A., Ammann, C.M., Oman, L., Shindell, D., Levis, S., Stenchikov, G. (2009). Did the Toba volcanic eruption of ~74 ka B.P. produce widespread glaciation? Journal of Geophysical Research: Atmospheres, 114(D10107). https://doi.org/10.1029/2008JD011652.
- Roje-Bonacci, T. (2009). Origin, duration and reclamation of natural dams. Proceedings of 2th International Conference: Long term behaviour of dams.(ur. E. Bauer, S. Semprich, G. Zenz) Graz.
- Roje-Bonacci, T. (2014). Velike prirodne brane s osvrtom na one nastale klizanjem. Hrvatske Vode, 22(87), 39–48.
- Solanki, K. S., Krivova, N. A., Haigh J. D. (2013). Solar irradiance variability and climate. Annual Review of Astronomy and Astrophysics, 51, 311–351. https://doi.org/10.1146/annurev-astro-082812-141007.
- Stauffer, B. (1993). The Greenland Ice Core Project. Science, 260, 1766–1767. https://doi.org/10.1126/science.260.5115.1766.
- Webb, B. W., Nobilis, F. (2007). Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrological Sciences Journal, 52(1), 74–85. https://doi.org/10.1623/hysj.52.1.74.
- Wolf, R. (1852.a). Sonnenflecken-Beobachtungen in der ersten Hälfte des Jahres 1852; Entdeckung des Zusammenhanges zwischen den Declinationsvariationen der Magnetnadel und den Sonnenflecken. Mittheilungen der Naturforschenden Gesellschaft in Bern, 245, 179–184.
- Wolf, R. (1852.b). Neue Untersuchungen über die Periode der Sonnenflecken und ihre Bedeutung. Mittheilungen der Naturforschenden Gesellschaft in Bern, 255, 249–270.
- Yaggi, M. (2021). Hydropower dams are not the solution to the climate crisis https://thehill.com/opinion/energy-environment/569586-hydropower-dams-are-not-the-solution-to-the-climate-crisis (posjet 1. lipnja 2023.)
- Yang, D., Yang, Y., Xia, J. (2021). Hydrological cycle and water resources in a changing world: A review. Geography and Sustainability, 2(2), 115–122. https://doi.org/10.1016/j.geosus.2021.05.003.