Analysis of the impact of green infrastructure on surface runoff from urban areas
- Authors: Urban Vozelj, Mojca Šraj, Nejc Bezak
- Citation: Acta hydrotechnica, vol. 36, no. 65, pp. 111-121, 2023. https://doi.org/10.15292/acta.hydro.2023.07
- Abstract: Current construction methods and the marked increase in urbanisation are contributing to a high proportion of impermeable surfaces in built areas. Such surfaces reduce the infiltration of rainfall into the ground, which in turn leads to high amounts of surface runoff, which can have negative consequences in terms of flood safety. The introduction of green and hybrid infrastructure seeks to improve the characteristics of urban areas in terms of increasing the infiltration of rainwater and reducing stormwater runoff. In this study, we considered the larger industrial area of Rudnik in Ljubljana. Based on data on rainfall characteristics and soil properties, we calculated the surface runoff for the current situation and the situation when the improvements were introduced, where we took into account green roofs, tree planting and porous ground surfaces. Having analyzed the data, measurements, and calculations, we found that green infrastructure contributed positively to the reduction of surface runoff in urban areas, with differences of up to 20% at the annual level and up to 10% at the storm event level compared to the situation without improvements. In terms of surface runoff, the use of porous ground surfaces was identified as the best solution, with relatively small differences between the selected measures. From a financial point of view, tree planting was identified as the best solution, as trees can provide similar surface runoff reduction as green roofs and porous surfaces, with lower construction and maintenance costs.
- Keywords: Precipitation, infiltration, runoff, hybrid infrastructure, green infrastructure, climate changes.
- Full text: a36uz.pdf
- References:
- Alves, A., Vojinovic, Z., Kapelan, Z., Sanchez, A., Gersonius, B. (2020). Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Sci. Total Environ. 703. https://doi.org/10.1016/j.scitotenv.2019.134980
- Anderson, C. C., Renaud, F. G., Hanscomb, S., Gonzalez-Ollauri, A. (2022). Green, hybrid, or grey disaster risk reduction measures: What shapes public preferences for nature-based solutions? J. Environ. Manage. 310, 114727. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.114727
- ARSO (2024). ARSO Arhivski podatki [WWW Document]. URL https://meteo.arso.gov.si/met/sl/archive/
- Banasik, K., Rutkowska, A., Kohnová, S. (2014). Retention and curve number variability in a small agricultural catchment: The probabilistic approach. Water (Switzerland) 6(5), 1118–1133. https://doi.org/10.3390/w6051118
- Bertalanič, R., Mojca, D., Andrej, D., Honzak, L., Kobold, M., Kozjek, K., Lokošek, N., Medved, A., Vertačnik, G., Vlahović, Ž., Žust, A. (2018). Ocena podnebnih sprememb v Sloveniji do konca 21 . stoletja, 1st ed. Slovenian Environment Agency, Ljubljana.
- Bezak, N., Kovačević, M., Johnen, G., Lebar, K., Zupanc, V., Vidmar, A., Rusjan, S. (2021). Exploring options for flood risk management with special focus on retention reservoirs. Sustain. 13(18). https://doi.org/10.3390/su131810099
- Bezak, N., Peranić, J., Mikoš, M., Arbanas, Ž. (2022). Evaluation of Hydrological Rainfall Loss Methods Using Small-Scale Physical Landslide Model. Water 14(17). https://doi.org/10.3390/w14172726
- CNT (2024). CNT calculator [WWW Document]. Online Calc. URL https://greenvalues.cnt.org/index.php#tabtop
- Debele, S. E., Kumar, P., Sahani, J., Marti-Cardona, B., Mickovski, S. B., Leo, L. S., Porcù, F., Bertini, F., Montesi, D., Vojinovic, Z., Vojinovic, Z., Di Sabatino, S. (2019). Nature-based solutions for hydro-meteorological hazards: Revised concepts, classification schemes and databases. Environ. Res. 179. https://doi.org/10.1016/j.envres.2019.108799
- Haowen, X., Yawen, W., Luping, W., Weilin, L., Wenqi, Z., Hong, Z., Yichen, Y., Jun, L. (2020). Comparing simulations of green roof hydrological processes by SWMM and HYDRUS-1D. Water Sci. Technol. Water Supply 20(1), 130–139. https://doi.org/10.2166/ws.2019.140
- HEC HMS (2021). HEC HMS User’s Manual, v. 4.7.
- IPCC (2019). Climate Change and Land.
- Johnen, G., Sapač, K., Rusjan, S., Zupanc, V., Vidmar, A., Bezak, N. (2020). Modelling and Evaluation of the Effect of Afforestation on the Runoff Generation Within the Glinščica River Catchment (Central Slovenia), in: The Handbook of Environmental Chemistry. Springer. Springer, 1–17. https://doi.org/http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/698_2020_649
- Kabisch, N., Korn, H., Stadler, J., Bonn, A. (2017). Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice, 1st ed. Springer, Cham, Switzerland. https://doi.org/https://doi.org/10.1007/978-3-319-56091-5
- Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., Cerdà, A. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610–611, 997–1009. https://doi.org/10.1016/j.scitotenv.2017.08.077
- Kermavnar, J., Vilhar, U. (2017). Canopy precipitation interception in urban forests in relation to stand structure. Urban Ecosyst. 20(6), 1373–1387. https://doi.org/10.1007/s11252-017-0689-7
- Kryžanowski, A., Brilly, M., Rusjan, S., Schnabl, S. (2014). Review Article: Structural flood-protection measures referring to several European case studies. Nat. Hazards Earth Syst. Sci. 14(1), 135–142. https://doi.org/10.5194/nhess-14-135-2014
- Munich Re-NatCatSERVICE (2019). Natural Catastrophe Know-How for Risk Management and Research [WWW Document]. Nat. Catastr. Online Tool. URL https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html
- Nakamura, F. (2022). Concept and Application of Green and Hybrid Infrastructure, in: Nakamura, F. (Ed.), Green Infrastructure and Climate Change Adaptation: Function, Implementation and Governance. Springer Singapore, Singapore, 11–30. https://doi.org/10.1007/978-981-16-6791-6_2
- Radinja, M., Atanasova, N., Zavodnik Lamovšek, A. (2021). Vodarski pogled na uvajanje modro-zelene infrastrukture v mestih. Urbani Izziv 32(1), 28 – 39. https://doi.org/10.5379/URBANI-IZZIV-2021-32-01-003
- Radinja, M., Vidmar, I., Atanasova, N., Mikoš, M., Šraj, M. (2019). Determination of Spatial and Temporal Variability of Soil Hydraulic Conductivity for Urban Runoff Modelling. Water 11(5). https://doi.org/10.3390/w11050941
- Rosenzweig, B. R., McPhillips, L., Chang, H., Cheng, C., Welty, C., Matsler, M., Iwaniec, D., Davidson, C. I. (2018). Pluvial flood risk and opportunities for resilience. WIREs Water 5(6), e1302. https://doi.org/https://doi.org/10.1002/wat2.1302
- Schanze, J. (2017). Nature-based solutions in flood risk management – Buzzword or innovation? J. Flood Risk Manag. 10(3), 281–282. https://doi.org/10.1111/jfr3.12318
- Sodnik, J., Mikoš, M., Bezak, N. (2023). Torrential Hazards’ Mitigation Measures in a Typical Alpine Catchment in Slovenia. Appl. Sci. 13(20). https://doi.org/10.3390/app132011136
- Šraj, M., Dirnbek, L., Brilly, M. (2010). The influence of effective rainfall on modeled runoff hydrograph | Vplyv efekt́vnych zrážok na modelovaný hydrograf odtoku. J. Hydrol. Hydromechanics 58(1), 3–14. https://doi.org/10.2478/v10098-010-0001-5
- Štajdohar, M., Brilly, M., Šraj, M. (2016). The influence of sustainable measures on runoff hydrograph from an urbanized drainage area. Acta Hydrotechnica 29(51), 145–162.
- Sutton-Grier, A. E., Wowk, K., Bamford, H. (2015). Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 51, 137–148. https://doi.org/https://doi.org/10.1016/j.envsci.2015.04.006
- Unger, K. (2023). Evaluation of hazard-mitigating hybrid infrastructure under climate change scenarios. University of Ljubljana.
- Vozelj, U. (2023). Analiza vpliva hibridne infrastrukture na poplave. University of Ljubljana.
- Zabret, K., Šraj, M. (2019). Rainfall Interception by Urban Trees and Their Impact on Potential Surface Runoff. Clean - Soil, Air, Water 47(8), 1800327. https://doi.org/10.1002/clen.201800327
- Zabret, K., Šraj, M. (2015). Can Urban Trees Reduce the Impact of Climate Change on Storm Runoff? Urbani izziv 26, S165–S178. https://doi.org/10.5379/urbani-izziv-en-2015-26-supplement-011
- Zema, D. A., Labate, A., Martino, D., Zimbone, S. M. (2017). Comparing Different Infiltration Methods of the HEC-HMS Model: The Case Study of the Mésima Torrent (Southern Italy). L. Degrad. Dev. 28(1), 294–308. https://doi.org/10.1002/ldr.2591
- Zhang, Y., Zhao, W., Chen, X., Jun, C., Hao, J., Tang, X., Zhai, J. (2021). Assessment on the effectiveness of urban stormwater management. Water (Switzerland) 13(1). https://doi.org/10.3390/w13010004