Analysis of the impact of green infrastructure on surface runoff from urban areas
Analiza vpliva zelene infrastrukture na površinski odtok z urbanega območja
- Avtorji: Urban Vozelj, Mojca Šraj, Nejc Bezak
- Citat: Acta hydrotechnica, vol. 36, no. 65, pp. 111-121, 2023. https://doi.org/10.15292/acta.hydro.2023.07
- Povzetek: Sedanji načini gradnje in izrazito povečevanje urbanizacije prispevajo k velikemu deležu neprepustnih površin. Takšne površine zmanjšujejo infiltracijo padavin v tla, kar vodi k večjim površinskim odtokom, ki imajo lahko negativne posledice z vidika poplavne varnosti. Z vpeljavo zelene in hibridne infrastrukture poskušamo izboljšati značilnosti urbanih površin z vidika povečanja infiltracije padavinske vode. V raziskavi smo obravnavali večje industrijsko območje Rudnik v Ljubljani. Na podlagi podatkov o značilnostih padavin in lastnosti tal smo izračunali površinski odtok za trenutno stanje in stanje po vpeljali izboljšav, pri čemer smo kot ukrepe upoštevali zelene strehe, zasaditev dreves in porozne talne površine. Na podlagi analize podatkov, meritev in izračunov smo ugotovili, da zelena infrastruktura pozitivno prispeva k zmanjšanju površinskega odtoka na urbanih površinah. Na letnem nivoju so bile razlike do 20 %, na nivoju večjega nevihtnega padavinskega dogodka pa do 10 % v primerjavi s stanjem brez izboljšav. Z vidika površinskega odtoka smo kot najboljšo rešitev prepoznali vpeljavo poroznih talnih površin, pri čemer so bile razlike med izbrano infrastrukturo relativno majhne. S finančnega vidika se je kot najboljša rešitev izkazala zasaditev dreves, saj ta lahko zagotavljajo podobno zmanjševanje površinskega odtoka kot zelene strehe in porozne talne površine, pri tem pa so stroški izgradnje in vzdrževanja manjši.
- Ključne besede: Padavine, infiltracija, površinski odtok, hibridna infrastruktura, zelena infrastruktura, podnebne spremembe.
- Polno besedilo: a36uz.pdf
- Viri:
- Alves, A., Vojinovic, Z., Kapelan, Z., Sanchez, A., Gersonius, B. (2020). Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Sci. Total Environ. 703. https://doi.org/10.1016/j.scitotenv.2019.134980
- Anderson, C. C., Renaud, F. G., Hanscomb, S., Gonzalez-Ollauri, A. (2022). Green, hybrid, or grey disaster risk reduction measures: What shapes public preferences for nature-based solutions? J. Environ. Manage. 310, 114727. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.114727
- ARSO (2024). ARSO Arhivski podatki [WWW Document]. URL https://meteo.arso.gov.si/met/sl/archive/
- Banasik, K., Rutkowska, A., Kohnová, S. (2014). Retention and curve number variability in a small agricultural catchment: The probabilistic approach. Water (Switzerland) 6(5), 1118–1133. https://doi.org/10.3390/w6051118
- Bertalanič, R., Mojca, D., Andrej, D., Honzak, L., Kobold, M., Kozjek, K., Lokošek, N., Medved, A., Vertačnik, G., Vlahović, Ž., Žust, A. (2018). Ocena podnebnih sprememb v Sloveniji do konca 21 . stoletja, 1st ed. Slovenian Environment Agency, Ljubljana.
- Bezak, N., Kovačević, M., Johnen, G., Lebar, K., Zupanc, V., Vidmar, A., Rusjan, S. (2021). Exploring options for flood risk management with special focus on retention reservoirs. Sustain. 13(18). https://doi.org/10.3390/su131810099
- Bezak, N., Peranić, J., Mikoš, M., Arbanas, Ž. (2022). Evaluation of Hydrological Rainfall Loss Methods Using Small-Scale Physical Landslide Model. Water 14(17). https://doi.org/10.3390/w14172726
- CNT (2024). CNT calculator [WWW Document]. Online Calc. URL https://greenvalues.cnt.org/index.php#tabtop
- Debele, S. E., Kumar, P., Sahani, J., Marti-Cardona, B., Mickovski, S. B., Leo, L. S., Porcù, F., Bertini, F., Montesi, D., Vojinovic, Z., Vojinovic, Z., Di Sabatino, S. (2019). Nature-based solutions for hydro-meteorological hazards: Revised concepts, classification schemes and databases. Environ. Res. 179. https://doi.org/10.1016/j.envres.2019.108799
- Haowen, X., Yawen, W., Luping, W., Weilin, L., Wenqi, Z., Hong, Z., Yichen, Y., Jun, L. (2020). Comparing simulations of green roof hydrological processes by SWMM and HYDRUS-1D. Water Sci. Technol. Water Supply 20(1), 130–139. https://doi.org/10.2166/ws.2019.140
- HEC HMS (2021). HEC HMS User’s Manual, v. 4.7.
- IPCC (2019). Climate Change and Land.
- Johnen, G., Sapač, K., Rusjan, S., Zupanc, V., Vidmar, A., Bezak, N. (2020). Modelling and Evaluation of the Effect of Afforestation on the Runoff Generation Within the Glinščica River Catchment (Central Slovenia), in: The Handbook of Environmental Chemistry. Springer. Springer, 1–17. https://doi.org/http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/698_2020_649
- Kabisch, N., Korn, H., Stadler, J., Bonn, A. (2017). Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice, 1st ed. Springer, Cham, Switzerland. https://doi.org/https://doi.org/10.1007/978-3-319-56091-5
- Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., Cerdà, A. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610–611, 997–1009. https://doi.org/10.1016/j.scitotenv.2017.08.077
- Kermavnar, J., Vilhar, U. (2017). Canopy precipitation interception in urban forests in relation to stand structure. Urban Ecosyst. 20(6), 1373–1387. https://doi.org/10.1007/s11252-017-0689-7
- Kryžanowski, A., Brilly, M., Rusjan, S., Schnabl, S. (2014). Review Article: Structural flood-protection measures referring to several European case studies. Nat. Hazards Earth Syst. Sci. 14(1), 135–142. https://doi.org/10.5194/nhess-14-135-2014
- Munich Re-NatCatSERVICE (2019). Natural Catastrophe Know-How for Risk Management and Research [WWW Document]. Nat. Catastr. Online Tool. URL https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html
- Nakamura, F. (2022). Concept and Application of Green and Hybrid Infrastructure, in: Nakamura, F. (Ed.), Green Infrastructure and Climate Change Adaptation: Function, Implementation and Governance. Springer Singapore, Singapore, 11–30. https://doi.org/10.1007/978-981-16-6791-6_2
- Radinja, M., Atanasova, N., Zavodnik Lamovšek, A. (2021). Vodarski pogled na uvajanje modro-zelene infrastrukture v mestih. Urbani Izziv 32(1), 28 – 39. https://doi.org/10.5379/URBANI-IZZIV-2021-32-01-003
- Radinja, M., Vidmar, I., Atanasova, N., Mikoš, M., Šraj, M. (2019). Determination of Spatial and Temporal Variability of Soil Hydraulic Conductivity for Urban Runoff Modelling. Water 11(5). https://doi.org/10.3390/w11050941
- Rosenzweig, B. R., McPhillips, L., Chang, H., Cheng, C., Welty, C., Matsler, M., Iwaniec, D., Davidson, C. I. (2018). Pluvial flood risk and opportunities for resilience. WIREs Water 5(6), e1302. https://doi.org/https://doi.org/10.1002/wat2.1302
- Schanze, J. (2017). Nature-based solutions in flood risk management – Buzzword or innovation? J. Flood Risk Manag. 10(3), 281–282. https://doi.org/10.1111/jfr3.12318
- Sodnik, J., Mikoš, M., Bezak, N. (2023). Torrential Hazards’ Mitigation Measures in a Typical Alpine Catchment in Slovenia. Appl. Sci. 13(20). https://doi.org/10.3390/app132011136
- Šraj, M., Dirnbek, L., Brilly, M. (2010). The influence of effective rainfall on modeled runoff hydrograph | Vplyv efekt́vnych zrážok na modelovaný hydrograf odtoku. J. Hydrol. Hydromechanics 58(1), 3–14. https://doi.org/10.2478/v10098-010-0001-5
- Štajdohar, M., Brilly, M., Šraj, M. (2016). The influence of sustainable measures on runoff hydrograph from an urbanized drainage area. Acta Hydrotechnica 29(51), 145–162.
- Sutton-Grier, A. E., Wowk, K., Bamford, H. (2015). Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 51, 137–148. https://doi.org/https://doi.org/10.1016/j.envsci.2015.04.006
- Unger, K. (2023). Evaluation of hazard-mitigating hybrid infrastructure under climate change scenarios. University of Ljubljana.
- Vozelj, U. (2023). Analiza vpliva hibridne infrastrukture na poplave. University of Ljubljana.
- Zabret, K., Šraj, M. (2019). Rainfall Interception by Urban Trees and Their Impact on Potential Surface Runoff. Clean - Soil, Air, Water 47(8), 1800327. https://doi.org/10.1002/clen.201800327
- Zabret, K., Šraj, M. (2015). Can Urban Trees Reduce the Impact of Climate Change on Storm Runoff? Urbani izziv 26, S165–S178. https://doi.org/10.5379/urbani-izziv-en-2015-26-supplement-011
- Zema, D. A., Labate, A., Martino, D., Zimbone, S. M. (2017). Comparing Different Infiltration Methods of the HEC-HMS Model: The Case Study of the Mésima Torrent (Southern Italy). L. Degrad. Dev. 28(1), 294–308. https://doi.org/10.1002/ldr.2591
- Zhang, Y., Zhao, W., Chen, X., Jun, C., Hao, J., Tang, X., Zhai, J. (2021). Assessment on the effectiveness of urban stormwater management. Water (Switzerland) 13(1). https://doi.org/10.3390/w13010004