Significant trends and structural shifts in rainfall patterns in Nigeria
- Authors: Nsikan Ime Obot, Ibifubara Humphrey, Omamuyovwi Rita Jolayemi
- Citation: Acta hydrotechnica, vol. 37, no. 67, pp. 103-125, 2024. https://doi.org/10.15292/acta.hydro.2024.06
- Abstract: Rainfall, with its varying timescales, impacts weather patterns, living conditions, and the environment. This study aims to evaluate trends and structural shifts in monthly rainfall across twenty-four locations in Nigeria spanning 51 years (1960-2010). Utilising the Mann-Kendall test statistic (MK) for trend identification and the cumulative sum method for detecting changes in structure, cyclic patterns, and random components within distributions, the analysis incorporated descriptive statistics, including coefficient of variation, skewness, kurtosis, and the Jarque-Bera test with associated p-values. Descriptive statistics can behave unusually where rainfall peculiarities occur. Despite the nonparametric nature of MK, it occasionally yielded varying values and dissimilar trends between total annual rainfall and total seasonal rainfall, as well as between average annual rainfall and average seasonal rainfall, attributed to high variability. Consequently, a statistically significant trend in total rainfall amounts might not correspond to the trend in mean rainfall amounts. Notably, statistically significant trends may sometimes be accompanied by similar significant structural shifts at every location. However, such trends and shifts are generally more frequent in the northern arid regions, specifically between 9.14°N and 12.53°N. For instance, a statistically significant change in total annual rainfall of 11.15 mm/year was observed in Kano (12.03°N), accompanied by an increasing structural shift around the 40th year of analysis. Conversely, a total annual rainfall significant trend of -3.01 mm/year occurred at Jos (9.52°N), though it was not among the nine locations having diverse significant structural shifts. Analysis of this nature helps in tackling water-related issues and understanding atmospheric phenomena.
- Keywords: Rainfall trends, Mann-Kendall test statistic, cumulative sum analysis, arid regions, significant trends and shifts.
- Full text: a37no.pdf
- References:
- Adger, W. N., Huq, S., Brown, K., Declan, C., Mike, H. (2003). Adaptation to climate change in the developing world. Progress in Development Studies 3(3), 179–195. https://doi.org/10.1191/1464993403ps060oa
- Agossou, A., Yang, J.-S., Lee, J.-B. (2022). Evaluation of potential seawater intrusion in the coastal aquifers system of Benin and effect of countermeasures considering future sea level rise. Water 14, 4001. https://doi.org/10.3390/w14244001
- Akinsanola, A. A., Ogunjobi, K. O. (2017). Recent homogeneity analysis and long-term spatio-temporal rainfall trends in Nigeria. Theoretical and Applied Climatology 128, 275–289. https://doi.org/10.1007/s00704-015-1701-x
- Amissah-Arthur, A., Jagtap, S. S. (1999). Geographic variation in growing season rainfall during three decades in Nigeria using principal component and cluster analyses. Theoretical and Applied Climatology 63, 107–116. https://doi.org/10.1007/s007040050096
- Ati, O. F., Iguisi, E. O., Afolayan, J. O. (2007). Are we experiencing drier conditions in the Sudano-Sahelian Zone of Nigeria? Journal of Applied Sciences Research 3(12), 1746–1751.
- Bello, O. B., Ganiyu, O. T., Wahab, M. K. A., Afolabi, M. S., Oluleye, F., Ig, S. A., Mahmud, J., Azeez, M. A., Abdulmaliq, S. Y. (2012). Evidence of climate change impacts on agriculture and food security in Nigeria. International Journal of Agriculture and Forestry 2(2), 49–55. https://doi.org/10.5923/j.ijaf.20120202.08
- Betts, R. A., Cox, P. M., Collins, M., Harris, P. P., Huntingford, C., Jones, C. D. (2004). The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology 78, 157–175. https://doi.org/10.1007/s00704-004-0050-y
- Chen, D., Liu, X., Yang, H. (2020). Performance Analysis of cumulative sum control charts based on parameter estimation. IOP Conference Series: Earth and Environmental Science 514(3), 032006. https://doi.org/10.1088/1755-1315/514/3/032006
- Esit, M., Çelik, R., Akbas, E. (2023). Spatial and temporal variation of meteorological parameters in the lower Tigris–Euphrates basin, Türkiye: application of non-parametric methods and an innovative trend approach. Water Science and Technology 87(8), 1982–2004. https://doi.org/10.2166/wst.2023.116
- Fröhlich, C., Lean, J. (1999). The sun’s total irradiance: cycles, trends and related climate change uncertainties since 1976. Geophysical Research Letters 25(23), 4377–4380. https://doi.org/10.1029/1998GL900157
- Haarsma, R. J., Selten, F. M., Weber, S. L., Kliphuis, M. (2005). Sahel rainfall variability and response to greenhouse warming. Geophysical Research Letters 32(17). https://doi.org/10.1029/2005GL023232
- Hamed, K. H., Ramachandra Rao, A. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology 204(1–4), 182–196. https://doi.org/10.1016/S0022-1694(97)00125-X
- Hess, T. M., Stephens, W., Maryah, U. M. (1995). Rainfall trends in the north east arid zone of Nigeria 1961-1990. Agricultural and Forest Meteorology 74(1–2), 87–97. https://doi.org/10.1016/0168-1923(94)02179-N
- Hulme, M., Doherty, R., Ngara, T., New, M., & Lister, D. (2001). African climate change: 1900-2100. Climate Research 17(2), 145–168. https://doi.org/10.3354/cr017145
- IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
- Isikwue, B. C., Ameh, M. E., Utah, A. (2012). Validity of the harmonic analysis of the monthly rainfall variability in Makurdi, Nigeria. World Journal of Applied Science and Technology 4(2), 189–195.
- Jendritzky, G., de Dear, R., Havenith, G. (2012). UTCI-why another thermal index? International Journal of Biometeorology 56, 421–428. https://doi.org/10.1007/s00484-011-0513-7
- Kendall, M. G. (1938). A new measure of rank correlation. Biometrika 30(1–2), 81–93. https://doi.org/10.1093/biomet/30.1-2.81
- Lean, J. L., Wang, Y. -M. Sheeley, Jr. N. R. (2002). The effect of increasing solar activity on the sun’s total and open magnetic flux during multiple cycles: implications for solar forcing of climate. Geophysical Research Letters 29(24), 77-1. https://doi.org/10.1029/2002GL015880
- Mahmoud, M. A., Maravelakis, P. E. (2010). The performance of the MEWMA control chart when parameters are estimated. Communications in Statistics – Simulation and Computation 39(9), 1803–1817. https://doi.org/10.1080/03610918.2010.518269
- Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society 13, 245–259. https://doi.org/10.2307/1907187
- Mumo, L., Yu, J., Ayugi, B. (2019). Evaluation of spatiotemporal variability of rainfall over Kenya from 1979 to 2017. Journal of Atmospheric and Solar-Terrestrial Physics 194, 105097. https://doi.org/10.1016/j.jastp.2019.105097
- Obot, N. I., Chendo, M. A. C., Udo, S. O., Ewona, I. O. (2010). Evaluation of rainfall trends in Nigeria for 30 years (1978-2007). International Journal of Physical Sciences 5(14), 2217–2222.
- Odekunle, T. O., Adejuwon, S. A. (2007). Assessing changes in the rainfall regime in Nigeria between 1961 and 2004. GeoJournal 70, 145–159. https://doi.org/10.1007/s10708-008-9121-4
- Odjugo, P. A. (2006). An analysis of rainfall patterns in Nigeria. Global Journal of Environmental Sciences 4(2), 139–145. https://doi.org/10.4314/gjes.v4i2.2455
- Ogungbenro, S. B., Morakinyo, T. E. (2014). Rainfall distribution and change detection across climatic zones in Nigeria. Weather and Climate Extremes 5, 1–6. https://doi.org/10.1016/j.wace.2014.10.002
- Oguntunde, P. G., Abiodun, B. J., & Lischeid, G. (2011). Rainfall trends in Nigeria, 1901-2000. Journal of Hydrology, 411(3–4), 207–218. https://doi.org/10.1016/j.jhydrol.2011.09.037
- Okeahialam, B. N. (2016). The cold dusty harmattan: a season of anguish for cardiologists and patients. Environmental Health Insights 10, EHI-S38350. https://doi.org/10.4137/EHI.S38350
- Page, E. S. (1954). Continuous inspection schemes. Biometrika 41(1/2), 100–115. https://doi.org/10.2307/2333009
- Ramanathan, V., Crutzen, P. J., Kiehl, J. T., Rosenfeld, D. (2001). Atmosphere: aerosols, climate, and the hydrological cycle. Science, 294(5549), 2119–2124. https://doi.org/10.1126/science.1064034
- Regier, P., Briceño, H., Boyer, J. N. (2019). Analyzing and comparing complex environmental time series using a cumulative sums approach. MethodsX 6, 779–787. https://doi.org/10.1016/j.mex.2019.03.014
- Roffe, S. J., van der Walt, A. J., Fitchett, J. M. (2023). Spatiotemporal characteristics of human thermal comfort across southern Africa: An analysis of the Universal Thermal Climate Index for 1971–2021. International Journal of Climatology 43(6), 2930–2952. https://doi.org/10.1002/joc.8009
- Schwanghart, W., Schütt, B. (2008). Meteorological causes of Harmattan dust in West Africa. Geomorphology 95(3–4), 412–428. https://doi.org/10.1016/j.geomorph.2007.07.002
- Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934
- Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature 467(7315), 555–561. https://doi.org/10.1038/nature09440
- Yue, S., Pilon, P., Cavadias, G. (2002). Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology 259(1–4), 254–271. https://doi.org/10.1016/S0022-1694(01)00594-7