Significant trends and structural shifts in rainfall patterns in Nigeria
Pomembni trendi in strukturni premiki v vzorcih padavin v Nigeriji
- Avtorji: Nsikan Ime Obot, Ibifubara Humphrey, Omamuyovwi Rita Jolayemi
- Citat: Acta hydrotechnica, vol. 37, no. 67, pp. 103-125, 2024. https://doi.org/10.15292/acta.hydro.2024.06
- Povzetek: Padavine – z različnimi časovnimi razponi – vplivajo na vremenske vzorce, življenjske razmere in okolje. Namen te raziskave je oceniti trende in strukturne premike v mesečni količini padavin na 24 lokacijah v Nigeriji v obdobju 51 let (1960–2010). Z uporabo Mann–Kendallove testne statistike (MK) za identifikacijo trenda in metode kumulativne vsote za odkrivanje sprememb v strukturi, cikličnih vzorcih in naključnih komponentah znotraj porazdelitev je analiza vključevala opisno statistiko, vključno s koeficientom variacije, asimetrijo, sploščenostjo in testom Jarque–Bera s pripadajočimi p-vrednostmi. Opisna statistika se obnaša nenavadno, kadar se pojavljajo posebnosti pri padavinah. Kljub neparametrični naravi MK je ta občasno dala različne vrednosti in različne trende med skupno količino letnih padavin in skupno količino sezonskih padavin, pa tudi med povprečno količino letnih padavin in povprečno količino sezonskih padavin, kar se pripisuje veliki variabilnosti. Posledično statistično pomemben trend skupnih količin padavin ne ustreza trendu srednjih količin padavin. Statistično pomembne trende lahko včasih spremljajo podobni pomembni strukturni premiki na vsaki lokaciji. Vendar so takšni trendi in premiki na splošno pogostejši v severnih sušnih regijah, zlasti med 9,14°N in 12,53°N. Statistično pomembna sprememba skupne letne količine padavin 11,15 mm je bila opažena v Kanu (12,03°N), ki jo je spremljal naraščajoči strukturni premik okoli 40. leta analize. Po drugi strani pa se je značilen trend povprečne letne količine padavin -3,01 mm/leto pojavil v Josu (9,52°N), čeprav ta ni bil med devetimi lokacijami z značilnimi strukturnimi premiki. Tovrstna analiza pomaga pri reševanju vprašanj, povezanih z vodo, in razumevanju atmosferskih pojavov.
- Ključne besede: Trendi padavin, Mann–Kendallov test, analiza kumulativne vsote, sušne regije, pomembni trendi in premiki.
- Polno besedilo: a37no.pdf
- Viri:
- Adger, W. N., Huq, S., Brown, K., Declan, C., Mike, H. (2003). Adaptation to climate change in the developing world. Progress in Development Studies 3(3), 179–195. https://doi.org/10.1191/1464993403ps060oa
- Agossou, A., Yang, J.-S., Lee, J.-B. (2022). Evaluation of potential seawater intrusion in the coastal aquifers system of Benin and effect of countermeasures considering future sea level rise. Water 14, 4001. https://doi.org/10.3390/w14244001
- Akinsanola, A. A., Ogunjobi, K. O. (2017). Recent homogeneity analysis and long-term spatio-temporal rainfall trends in Nigeria. Theoretical and Applied Climatology 128, 275–289. https://doi.org/10.1007/s00704-015-1701-x
- Amissah-Arthur, A., Jagtap, S. S. (1999). Geographic variation in growing season rainfall during three decades in Nigeria using principal component and cluster analyses. Theoretical and Applied Climatology 63, 107–116. https://doi.org/10.1007/s007040050096
- Ati, O. F., Iguisi, E. O., Afolayan, J. O. (2007). Are we experiencing drier conditions in the Sudano-Sahelian Zone of Nigeria? Journal of Applied Sciences Research 3(12), 1746–1751.
- Bello, O. B., Ganiyu, O. T., Wahab, M. K. A., Afolabi, M. S., Oluleye, F., Ig, S. A., Mahmud, J., Azeez, M. A., Abdulmaliq, S. Y. (2012). Evidence of climate change impacts on agriculture and food security in Nigeria. International Journal of Agriculture and Forestry 2(2), 49–55. https://doi.org/10.5923/j.ijaf.20120202.08
- Betts, R. A., Cox, P. M., Collins, M., Harris, P. P., Huntingford, C., Jones, C. D. (2004). The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology 78, 157–175. https://doi.org/10.1007/s00704-004-0050-y
- Chen, D., Liu, X., Yang, H. (2020). Performance Analysis of cumulative sum control charts based on parameter estimation. IOP Conference Series: Earth and Environmental Science 514(3), 032006. https://doi.org/10.1088/1755-1315/514/3/032006
- Esit, M., Çelik, R., Akbas, E. (2023). Spatial and temporal variation of meteorological parameters in the lower Tigris–Euphrates basin, Türkiye: application of non-parametric methods and an innovative trend approach. Water Science and Technology 87(8), 1982–2004. https://doi.org/10.2166/wst.2023.116
- Fröhlich, C., Lean, J. (1999). The sun’s total irradiance: cycles, trends and related climate change uncertainties since 1976. Geophysical Research Letters 25(23), 4377–4380. https://doi.org/10.1029/1998GL900157
- Haarsma, R. J., Selten, F. M., Weber, S. L., Kliphuis, M. (2005). Sahel rainfall variability and response to greenhouse warming. Geophysical Research Letters 32(17). https://doi.org/10.1029/2005GL023232
- Hamed, K. H., Ramachandra Rao, A. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology 204(1–4), 182–196. https://doi.org/10.1016/S0022-1694(97)00125-X
- Hess, T. M., Stephens, W., Maryah, U. M. (1995). Rainfall trends in the north east arid zone of Nigeria 1961-1990. Agricultural and Forest Meteorology 74(1–2), 87–97. https://doi.org/10.1016/0168-1923(94)02179-N
- Hulme, M., Doherty, R., Ngara, T., New, M., & Lister, D. (2001). African climate change: 1900-2100. Climate Research 17(2), 145–168. https://doi.org/10.3354/cr017145
- IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
- Isikwue, B. C., Ameh, M. E., Utah, A. (2012). Validity of the harmonic analysis of the monthly rainfall variability in Makurdi, Nigeria. World Journal of Applied Science and Technology 4(2), 189–195.
- Jendritzky, G., de Dear, R., Havenith, G. (2012). UTCI-why another thermal index? International Journal of Biometeorology 56, 421–428. https://doi.org/10.1007/s00484-011-0513-7
- Kendall, M. G. (1938). A new measure of rank correlation. Biometrika 30(1–2), 81–93. https://doi.org/10.1093/biomet/30.1-2.81
- Lean, J. L., Wang, Y. -M. Sheeley, Jr. N. R. (2002). The effect of increasing solar activity on the sun’s total and open magnetic flux during multiple cycles: implications for solar forcing of climate. Geophysical Research Letters 29(24), 77-1. https://doi.org/10.1029/2002GL015880
- Mahmoud, M. A., Maravelakis, P. E. (2010). The performance of the MEWMA control chart when parameters are estimated. Communications in Statistics – Simulation and Computation 39(9), 1803–1817. https://doi.org/10.1080/03610918.2010.518269
- Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society 13, 245–259. https://doi.org/10.2307/1907187
- Mumo, L., Yu, J., Ayugi, B. (2019). Evaluation of spatiotemporal variability of rainfall over Kenya from 1979 to 2017. Journal of Atmospheric and Solar-Terrestrial Physics 194, 105097. https://doi.org/10.1016/j.jastp.2019.105097
- Obot, N. I., Chendo, M. A. C., Udo, S. O., Ewona, I. O. (2010). Evaluation of rainfall trends in Nigeria for 30 years (1978-2007). International Journal of Physical Sciences 5(14), 2217–2222.
- Odekunle, T. O., Adejuwon, S. A. (2007). Assessing changes in the rainfall regime in Nigeria between 1961 and 2004. GeoJournal 70, 145–159. https://doi.org/10.1007/s10708-008-9121-4
- Odjugo, P. A. (2006). An analysis of rainfall patterns in Nigeria. Global Journal of Environmental Sciences 4(2), 139–145. https://doi.org/10.4314/gjes.v4i2.2455
- Ogungbenro, S. B., Morakinyo, T. E. (2014). Rainfall distribution and change detection across climatic zones in Nigeria. Weather and Climate Extremes 5, 1–6. https://doi.org/10.1016/j.wace.2014.10.002
- Oguntunde, P. G., Abiodun, B. J., & Lischeid, G. (2011). Rainfall trends in Nigeria, 1901-2000. Journal of Hydrology, 411(3–4), 207–218. https://doi.org/10.1016/j.jhydrol.2011.09.037
- Okeahialam, B. N. (2016). The cold dusty harmattan: a season of anguish for cardiologists and patients. Environmental Health Insights 10, EHI-S38350. https://doi.org/10.4137/EHI.S38350
- Page, E. S. (1954). Continuous inspection schemes. Biometrika 41(1/2), 100–115. https://doi.org/10.2307/2333009
- Ramanathan, V., Crutzen, P. J., Kiehl, J. T., Rosenfeld, D. (2001). Atmosphere: aerosols, climate, and the hydrological cycle. Science, 294(5549), 2119–2124. https://doi.org/10.1126/science.1064034
- Regier, P., Briceño, H., Boyer, J. N. (2019). Analyzing and comparing complex environmental time series using a cumulative sums approach. MethodsX 6, 779–787. https://doi.org/10.1016/j.mex.2019.03.014
- Roffe, S. J., van der Walt, A. J., Fitchett, J. M. (2023). Spatiotemporal characteristics of human thermal comfort across southern Africa: An analysis of the Universal Thermal Climate Index for 1971–2021. International Journal of Climatology 43(6), 2930–2952. https://doi.org/10.1002/joc.8009
- Schwanghart, W., Schütt, B. (2008). Meteorological causes of Harmattan dust in West Africa. Geomorphology 95(3–4), 412–428. https://doi.org/10.1016/j.geomorph.2007.07.002
- Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934
- Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature 467(7315), 555–561. https://doi.org/10.1038/nature09440
- Yue, S., Pilon, P., Cavadias, G. (2002). Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology 259(1–4), 254–271. https://doi.org/10.1016/S0022-1694(01)00594-7