3D simulations of flow past a cylindrical bridge pier for determination of drag coefficient as a function of Froude number
- Authors: Gorazd Novak, José Manuel Domínguez Alonso
- Citation: Acta hydrotechnica, vol. 38, no. 68, pp. 29-37, 2025. https://doi.org/10.15292/acta.hydro.2025.03
- Abstract: Increasingly frequent floods demonstrate the vulnerability of bridges and their piers. Designing a pier involves determining its drag coefficient C_d. In the existing literature, C_d is given as a function of the Reynolds number Re, i.e. C_d=f(Re), while the present study also investigated C_d as a function of the Froude number Fr, i.e. C_d=f(Fr). The SPH method and the model DualSPHysics were used to simulate three-dimensional turbulent free-surface flows past a surface-piercing cylinder in a straight horizontal channel. Subcritical, critical, and supercritical flows with Fr<2 were examined. The model was calibrated for flows in a duct filled with water (i.e. flows without free water surface) and validated against open channel experiments from the literature. Finally, the model was used to simulate real-life high-discharge conditions. Determination of C_d=f(Fr) indicated that the constant value of C_d as defined in the Eurocode 1 standard is not necessarily optimal.
- Keywords: SPH, DualSPHysics, 3-D model, bridge pier, drag coefficient.
- Full text: a38gn.pdf
- References:
- Akhlaghi, E., Babarsad, M.S., Derikvand, E., Abedini, M. (2020). Assessment the Effects of Different Parameters to Rate Scour around Single Piers and Pile Groups: A Review. Archives of Computational Methods in Engineering 27, 183 – 197. https://doi.org/10.1007/s11831-018-09304-w.
- Alabi, P.D. (2006). Time development of local scour at a bridge pier fitted with a collar, Master Thesis, University of Saskatchewan, 211 p.
- Administration of the Republic of Slovenia for Civil Protection and Disaster Relief (2023). Floods in Slovenia, August 2023 - Presentation at CROSScade Workshop – Lessons learned from recent flood events in Slovenia & Croatia, Ljubljana, 27.10.2023
- Capasso, S., Tagliafierro, B., Martínez-Estévez, I., Altomare, C., Gómez-Gesteira, M., Göteman, M., Viccione, G. (2025). Development of an SPH-based numerical wave-current tank and application to wave energy converters. Applied Energy 377B, 124508. https://doi:10.1016/j.apenergy.2024.124508.
- Cassan, L., Tien, T.D., Courret, D., Laurens, P., Dartus, D. (2014). Hydraulic Resistance of Emergent Macroroughness at Large Froude Numbers: Design of Nature-Like Fishpasses. Journal of Hydraulic Engineering 140(9), 04014043. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000910.
- Cengel, Y.A., Cimbala, J.M. (2014). Fluid Mechanics – Fundamentals and Applications. Third edition. McGraw-Hill, New York, 1000 p.
- Chaplin, J.R.,Teigen, P. (2003). Steady flow past a vertical surface-piercing circular cylinder. Journal of Fluids and Structures 18, 271 – 285. https://doi.org/10.1016/j.jfluidstructs.2003.07.009.
- Domínguez, J.M., Fourtakas, G., Altomare, C., Canelas, R.B., Tafuni, A., García-Feal, O., Martínez-Estévez, I., Mokos, A., Vacondio, R., Crespo, A.J.C., Rogers, B.D., Stansby, P.K., Gómez-Gesteira, M. (2022). DualSPHysics: from fluid dynamics to multiphysics problems. Computational Particle Mechanics 9, 867 – 895. https://doi.org/10.1007/s40571-021-00404-2.
- DualSPHysics (2025). Available at: https://dual.sphysics.org/ (accessed 4.2.2025).
- Ducrocq, T., Cassan, L., Chorda, J., Roux, H. (2017). Flow and drag force around a free surface piercing cylinder for environmental applications. Environmental Fluid Mechanics 17, 629 – 645. https://doi.org/10.1007/s10652-016-9505-9.
- Hanousek, N., Ranabhat, B., English, A., Ahmadian, R. (2024). A Smoothed Particle Hydrodynamics method for vertical axis turbine design and assessment. Journal of Hydrodynamics, 36, 991 –1007. https://doi:10.1007/s42241-024-0074-y.
- Huang, W., Yang, Q., Xiao, H. (2009). CFD modeling of scale effects on turbulence flow and scour around bridge piers. Computers & Fluids 38, 1050 – 1058. https://doi.org/10.1016/j.compfluid.2008.01.029.
- Kim, H.S., Chen, H.-C., Briaud, J.-L. (2022). Numerical Simulation of Scour Hole Backfilling in Unidirectional Flow. Journal of Hydraulic Engineering 148(7), 04022013 https://doi.org/10.1061/(ASCE)HY.1943-7900.0001982.
- Koo, B., Yang, J., Yeon S.M., Stern, F. (2014). Reynolds and Froude number effect on the flow past an interface-piercing circular cylinder. International Journal of Naval Architecture and Ocean Engineering 6, 529 – 561. https://doi.org/10.2478/IJNAOE-2013-0197.
- Laha, S., Fourtakas, G., Das, P.K., Keshmiri, A. (2025). Graphics processing unit accelerated modeling of thrombus formation in cardiovascular systems using smoothed particle hydrodynamics. Physics of Fluids, 37(2), 021902. https://doi:10.1063/5.0250640.
- Majtan, E., Cunningham, L.S., Rogers, B.D. (2021). Flood-Induced Hydrodynamic and Debris Impact Forces on Single-Span Masonry Arch Bridge. Journal of Hydraulic Engineering 147(11), 04021043. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001932.
- Novak, G., Domínguez, J.M., Tafuni, A., Četina, M., Žagar, D. (2019). Določitev koeficienta upora potopljenega telesa z uporabo metode SPH (Evaluation of the drag coefficient of a fully submerged body using SPH). Acta hydrotechnica 32/57 (in Slovenian) https://doi.org/10.15292/acta.hydro.2019.08.
- Novak, G., Domínguez, J.M., Tafuni, A., Silva, A.T., Pengal, P., Četina, M., Žagar, D. (2021). Water 13, 1595. https://doi.org/10.3390/w13111595.
- Novak, G., Pengal, P., Silva, A.T., Domínguez, J.M., Tafuni, A., Četina, M., Žagar, D. (2023). Interdisciplinary design of a fish ramp using migration routes analysis. Ecological Modelling 475, 110189. https://doi.org/10.1016/j.ecolmodel.2022.110189.
- Rajar, R. (1997). Hidromehanika. Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Ljubljana, 235 p. (in Slovenian).
- Panici, D., de Almeida, G.A.M. (2018). Formation, growth, and failure of debris jams at bridge piers. Water Resources Research 54, 6226 – 6241. https://doi.org/10.1029/2017WR022177.
- Roulund, A., Sumer B.M., Fredsøe J., Michelsen J. (2005). Numerical and experimental investigation of flow and scour around a circular pile. Journal of Fluid Mechanics 534, 351 – 401 https://doi.org/10.1017/S0022112005004507.
- Schalko, I., Schmocker, L., Weitbrecht, V., Boes, R.M. (2020). Laboratory study on wood accumulation probability at bridge piers. Journal of Hydraulic Research 58(4), 566 – 581. https://doi.org/10.1080/00221686.2019.1625820.
- Standard EN 1991-1-6:2005 Eurocode 1: Actions on structures – Part 1-6: general actions – Actions during execution
- White, F.M. (2011). Fluid Mechanics – Seventh Edition, McGraw-Hill, New York, 885 p.
- Zhang, W., Rennie, C.D., Nistor, I. (2023). Experimental investigation of the hydrodynamic field around a half-cone woody debris jam on a bridge pier. Journal of Hydraulic Research 61(6), 866– 879. https://doi.org/10.1080/00221686.2023.2259859.