3D simulations of flow past a cylindrical bridge pier for determination of drag coefficient as a function of Froude number
3D simulacije obtekanja valjastega mostnega opornika za določitev koeficienta upora v odvisnosti od Froudovega števila
- Avtorji: Gorazd Novak, José Manuel Domínguez Alonso
- Citat: Acta hydrotechnica, vol. 38, no. 68, pp. 29-37, 2025. https://doi.org/10.15292/acta.hydro.2025.03
- Povzetek: Vse pogostejše poplave izpostavljajo ranljivost mostov in mostnih opornikov. Pri dimenzioniranju mostnih opornikov je treba upoštevati njihov koeficient upora C_d. V večini virov je ta podan v odvisnosti od Reynoldsovega števila, tj. C_d=f(Re), ta raziskava pa je obravnavala tudi C_d v odvisnosti od Froudovega števila. Z uporabo metode SPH in modela DualSPHysics so bile izvedene tridimenzionalne simulacije turbulentnega toka s prosto gladino, ki nastopa pri obtekanju valjastega mostnega opornika v ravnem horizontalnem kanalu. Širok razpon pretokov je zajel primere mirnega, kritičnega in deročega toka s Froudovimi števili Fr<2. Model je bil umerjen na primere toka v pokritih kanalih brez proste gladine in nato validiran z eksperimenti na odprtem kanalu iz literature. Nazadnje je bil uporabljen za simulacije realističnih visokovodnih dogodkov. Določitev C_d=f(Fr) je pokazala, da konstantna vrednost C_d, ki jo predpisuje standard Eurocode 1, ni nujno optimalna.
- Ključne besede: SPH, DualSPHysics, 3D-model, mostni opornik, koeficient upora.
- Polno besedilo: a38gn.pdf
- Viri:
- Akhlaghi, E., Babarsad, M.S., Derikvand, E., Abedini, M. (2020). Assessment the Effects of Different Parameters to Rate Scour around Single Piers and Pile Groups: A Review. Archives of Computational Methods in Engineering 27, 183 – 197. https://doi.org/10.1007/s11831-018-09304-w.
- Alabi, P.D. (2006). Time development of local scour at a bridge pier fitted with a collar, Master Thesis, University of Saskatchewan, 211 p.
- Administration of the Republic of Slovenia for Civil Protection and Disaster Relief (2023). Floods in Slovenia, August 2023 - Presentation at CROSScade Workshop – Lessons learned from recent flood events in Slovenia & Croatia, Ljubljana, 27.10.2023
- Capasso, S., Tagliafierro, B., Martínez-Estévez, I., Altomare, C., Gómez-Gesteira, M., Göteman, M., Viccione, G. (2025). Development of an SPH-based numerical wave-current tank and application to wave energy converters. Applied Energy 377B, 124508. https://doi:10.1016/j.apenergy.2024.124508.
- Cassan, L., Tien, T.D., Courret, D., Laurens, P., Dartus, D. (2014). Hydraulic Resistance of Emergent Macroroughness at Large Froude Numbers: Design of Nature-Like Fishpasses. Journal of Hydraulic Engineering 140(9), 04014043. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000910.
- Cengel, Y.A., Cimbala, J.M. (2014). Fluid Mechanics – Fundamentals and Applications. Third edition. McGraw-Hill, New York, 1000 p.
- Chaplin, J.R.,Teigen, P. (2003). Steady flow past a vertical surface-piercing circular cylinder. Journal of Fluids and Structures 18, 271 – 285. https://doi.org/10.1016/j.jfluidstructs.2003.07.009.
- Domínguez, J.M., Fourtakas, G., Altomare, C., Canelas, R.B., Tafuni, A., García-Feal, O., Martínez-Estévez, I., Mokos, A., Vacondio, R., Crespo, A.J.C., Rogers, B.D., Stansby, P.K., Gómez-Gesteira, M. (2022). DualSPHysics: from fluid dynamics to multiphysics problems. Computational Particle Mechanics 9, 867 – 895. https://doi.org/10.1007/s40571-021-00404-2.
- DualSPHysics (2025). Available at: https://dual.sphysics.org/ (accessed 4.2.2025).
- Ducrocq, T., Cassan, L., Chorda, J., Roux, H. (2017). Flow and drag force around a free surface piercing cylinder for environmental applications. Environmental Fluid Mechanics 17, 629 – 645. https://doi.org/10.1007/s10652-016-9505-9.
- Hanousek, N., Ranabhat, B., English, A., Ahmadian, R. (2024). A Smoothed Particle Hydrodynamics method for vertical axis turbine design and assessment. Journal of Hydrodynamics, 36, 991 –1007. https://doi:10.1007/s42241-024-0074-y.
- Huang, W., Yang, Q., Xiao, H. (2009). CFD modeling of scale effects on turbulence flow and scour around bridge piers. Computers & Fluids 38, 1050 – 1058. https://doi.org/10.1016/j.compfluid.2008.01.029.
- Kim, H.S., Chen, H.-C., Briaud, J.-L. (2022). Numerical Simulation of Scour Hole Backfilling in Unidirectional Flow. Journal of Hydraulic Engineering 148(7), 04022013 https://doi.org/10.1061/(ASCE)HY.1943-7900.0001982.
- Koo, B., Yang, J., Yeon S.M., Stern, F. (2014). Reynolds and Froude number effect on the flow past an interface-piercing circular cylinder. International Journal of Naval Architecture and Ocean Engineering 6, 529 – 561. https://doi.org/10.2478/IJNAOE-2013-0197.
- Laha, S., Fourtakas, G., Das, P.K., Keshmiri, A. (2025). Graphics processing unit accelerated modeling of thrombus formation in cardiovascular systems using smoothed particle hydrodynamics. Physics of Fluids, 37(2), 021902. https://doi:10.1063/5.0250640.
- Majtan, E., Cunningham, L.S., Rogers, B.D. (2021). Flood-Induced Hydrodynamic and Debris Impact Forces on Single-Span Masonry Arch Bridge. Journal of Hydraulic Engineering 147(11), 04021043. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001932.
- Novak, G., Domínguez, J.M., Tafuni, A., Četina, M., Žagar, D. (2019). Določitev koeficienta upora potopljenega telesa z uporabo metode SPH (Evaluation of the drag coefficient of a fully submerged body using SPH). Acta hydrotechnica 32/57 (in Slovenian) https://doi.org/10.15292/acta.hydro.2019.08.
- Novak, G., Domínguez, J.M., Tafuni, A., Silva, A.T., Pengal, P., Četina, M., Žagar, D. (2021). Water 13, 1595. https://doi.org/10.3390/w13111595.
- Novak, G., Pengal, P., Silva, A.T., Domínguez, J.M., Tafuni, A., Četina, M., Žagar, D. (2023). Interdisciplinary design of a fish ramp using migration routes analysis. Ecological Modelling 475, 110189. https://doi.org/10.1016/j.ecolmodel.2022.110189.
- Rajar, R. (1997). Hidromehanika. Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Ljubljana, 235 p. (in Slovenian).
- Panici, D., de Almeida, G.A.M. (2018). Formation, growth, and failure of debris jams at bridge piers. Water Resources Research 54, 6226 – 6241. https://doi.org/10.1029/2017WR022177.
- Roulund, A., Sumer B.M., Fredsøe J., Michelsen J. (2005). Numerical and experimental investigation of flow and scour around a circular pile. Journal of Fluid Mechanics 534, 351 – 401 https://doi.org/10.1017/S0022112005004507.
- Schalko, I., Schmocker, L., Weitbrecht, V., Boes, R.M. (2020). Laboratory study on wood accumulation probability at bridge piers. Journal of Hydraulic Research 58(4), 566 – 581. https://doi.org/10.1080/00221686.2019.1625820.
- Standard EN 1991-1-6:2005 Eurocode 1: Actions on structures – Part 1-6: general actions – Actions during execution
- White, F.M. (2011). Fluid Mechanics – Seventh Edition, McGraw-Hill, New York, 885 p.
- Zhang, W., Rennie, C.D., Nistor, I. (2023). Experimental investigation of the hydrodynamic field around a half-cone woody debris jam on a bridge pier. Journal of Hydraulic Research 61(6), 866– 879. https://doi.org/10.1080/00221686.2023.2259859.