Numerical simulation of dam-break flow using a modified Runge-Kutta scheme with validation
- Authors: Lamia Touazi, Tahar Ikni, Ali Berreksi
- Citation: Acta hydrotechnica, vol. 38, no. 69, pp. 65-85, 2025. https://doi.org/10.15292/acta.hydro.2025.06
- Abstract: This paper presents a numerical scheme based on the second-order Runge‒Kutta method, combined with finite-difference spatial discretisation, for simulating dam-break flows governed by the one-dimensional Saint-Venant equations. The proposed method introduces a flow decomposition coupled with an artificial viscosity term inspired by previous work, in order to improve the numerical stability and accuracy of the results. A comparative analysis is carried out between the classical scheme and the modified Runge‒Kutta second-order scheme using an analytical solution as a reference. The results show that the modified scheme is significantly better matched to the analytical solution. The method is then applied to several dam failure scenarios including complex conditions such as triangular and trapezoidal obstacles, sloping bottoms and dry bed/wet bed transitions. The numerical results are compared with experimental data and simulation results published in the specialist literature. In all cases, the modified scheme performs better confirming its robustness and accuracy for modelling the propagation of dam burst waves under complex hydraulic conditions.
- Keywords: Dam-break, Saint-Venant, Modelling, Runge‒Kutta classical scheme, Friction, Runge‒Kutta modified scheme.
- Full text: a38lt.pdf
- References:
- Al-Ansari, N.; Adamo, N.; Issa, I. E.; Sissakian, V. K.; Knutsson, S. (2015). Mystery of Mosul Dam the Most Dangerous Dam in the World: Dam Failure and its Consequences, Journal of Earth Sciences and Geotechnical Engineering, 5(3), 95-111.
- Azeez, O.; Elfeki, A.; Kamis, A. S.; Chaabani, A. (2020). Dam-break analysis and flood disaster simulation in arid urban environment: the Um Al-Khair dam case study, Jeddah, Saudi Arabia. Natural Hazards, 100(3), 995-1011. https://doi.org/10.1007/s11069-019-03836-5.
- Bellos, V.; Hrissanthou, V. (2011). Numerical simulation of a dam-break flood wave, European Water, 33, 45-53.
- Berreksi, A.; Ikni, T.; Benmamar, S.; Amara, L.; Hamchaoui, S.; Benzerra, A.; Remini, B. (2022). Numerical study using an implicit finite difference scheme of a high velocity flow crossing a non-prismatic hydraulic structure – case of symmetrical gradual expansion, International Journal of Hydrology Science and Technology, 14(2), 109–123. doi: 10.1504/IJHST.2022.124544.
- Cannata, M.; Marzocchi, R. (2012). Two-dimensional dam break flooding simulation: a GIS-embedded approach, Natural Hazards, 61, 1143-1159. https://doi.org/10.1007/s11069-011-9974-6
- Castro-Orgaz, O.; Chanson, H. (2017). Ritter’s dry-bed dam-break flows: positive and negative wave dynamics, Environmental Fluid Mechanics, 17, 665-694, https://doi.org/10.1007/s10652-017-9512-5
- Chang, T. J.; Kao, H. M.; Chang, K. H.; Hsu, M. H. (2011). Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics, Journal of Hydrology, 408(1-2), 78-90.
- Chanson, H. (2004). The Hydraulics of Open Channel Flows: An Introduction. Butterworth-Heinemann, Oxford, UK, 2nd edition, 630 p.
- Chanson, H. (2005). Applications of the Saint-Venant equations and method of characteristics to the dam break wave problem, Report No. CH55/05, Department of Civil Engineering, The University of Queensland, Brisbane, Australia, May, 135 p. https://doi.org/10.14264/9438
- Chen, A. S.; Hsu, M. H.; Chen, T. S.; Chang, T. J. (2005). An integrated inundation model for highly developed urban areas, Water Science and Technology, 51, 221-229.
- Das, S. K.; Bagheri, J. (2015). Modelling of shallow-water equations by using compact MacCormack-type schemes with application to dam-break problem, International Journal of Advances in Applied Mathematics and Mechanics, 2(3), 60-71.
- García-Martínez, R.; González-Ramírez, H.; O’Brien, J. S. (2009). Dam-break flood routing. WIT Transactions on State of the Art in Science and Engineering, Vol. 36. WIT Press, Southampton, UK. ISSN 1755-8336 (online). https://doi.org/10.2495/978-1-84564-142-9/04.
- García-Navarro, P.; Brufau, P.; Burguete, J.; Murillo, J. (2008). The shallow water equations: An example of hyperbolic system. Monografias de la Real Academia de Ciencias de Zaragoza, Fluid Mechanics, CPS. University of Zaragoza. 50018 Zaragoza, Spain, 31, 89-119.
- Gu, S.; Zheng, X.; Ren, L.; Xie, H.; Huang, Y.; Wei, J.; Shao, S. (2017). SWESPHysics simulation of dam break flows at South-Gate Gorges Reservoir, Water, 9(6), 387-407. https://doi.org/10.3390/w9060387
- Hsu, C.-T.; Yeh, K.-C. (2002). Iterative explicit simulation of 1D surges and dam-break flows, International Journal of Numerical Methods in Fluids, 38, 647-675, https://doi.org/10.1002/fld.236.
- Ikni, T.; Berreksi, A.; Hamidou, M.; Belhocine, M.; Nebbar, M. L.; Benkadja, R. (2018). Contribution to the study of the dam break wave propagation via finite differences formulations, Larhyss Journal, 33, 169-188.
- Ikni, T.; Berreksi, A.; Touazi, L.; Belhocine, M. (2024a). Lax-Friedrichs numerical scheme for simulating the failure wave of a dam in the presence of obstacles, Larhyss Journal, 57, 175-185.
- Ikni, T.; Berreksi, A.; Bennacer, L. (2024b). One-dimensional numerical simulation of dam failure, Studies in Engineering and Exact Sciences, 5(2), 1-22.
- IMPACT, EC Contract EVG1-CT-2001-00037. Investigation of Extreme Flood Processes and Uncertainties, 2004, http://www.impact-project.net/.
- Kirstetter, G.; Delestre, O.; Lagree, P.-Y.; Popinet, S.; Josserand, C. (2021). B-flood 1.0: an open-source Saint-Venant model for flash flood simulation using adaptive refinement, Geosientific Model Development Discussions, https://doi.org/10.5194/gmd-2021-15
- Lai, W.; Khan, A. A. (2012). Discontinuous Galerkin Method for 1D Shallow Water Flows in Natural Rivers, Engineering Applications of Computational Fluid Mechanics, 6, 1, 74-86, https://doi.org/10.1080/19942060.2012.11015404
- Lim, M.; Ginting, B. M.; Senjaya, T.; Kieswanti, C. (2024). Comparison of 1D, coupled 1D–2D, and 2D shallow water numerical modeling for dam-break flow analysis of Way-Ela dam, Indonesia. Acta Hydrotechnica, 27‑50. https://doi.org/10.15292/acta.hydro.2024.02
- Magdalena, I.; Pebriansyah, M. F. E. (2022). Numerical treatment of finite difference method for solving dam break model on a wet-dry bed with an obstacle. Results in Engineering, 14, 100382.
- Maghsoodi, R.; Khademalrasoul, A.; Sarkardeh, H. (2022). 3D numerical simulation of dam-break flow over different obstacles in a dry bed, Water Supply, 22(4), 4015. https://doi.org/10.2166/ws.2022.031.
- Maitsa, T.-R.; Mardika, M.-G.-I.; Adityawan, M.-B.; Harlan, D.; Kusumastuti, D.; Kuntoro, A.-A. (2020). 2D numerical simulation of urban dam break and its effect to building using Lax scheme with numerical filter. E3S Web of Conferences, 156, 04003. https://doi.org/10.1051/e3sconf/202015604003.
- Mohapatra, P.K.; Bhallamudi, S.M. (1996). Computation of a dam-break flood wave in channel transitions, Advances in Water Resources, 19(3), 181–187,
- Mohsenabadi, S. E.; Nistor, I.; Mohammadian, A.; Kheirkhah Gildeh, H. (2023). CFD modelling of initial stages of dam-break flow, Canadian Journal of Civil Engineering, 50(10), 838–852. https://doi.org/10.1139/cjce-2021-0493
- Ozmen Cagatay, H.; Kocaman, S. (2011). Dam Break Flow in the Presence of Obstacle: Experiment and CFD Simulation, Engineering Applications of Computational Fluid Mechanics, 5( 4), 541–552. https://doi.org/10.1080/19942060.2011.11015393
- Pilotti, M.; Maranzoni, A.; Tomirotti, M.; Valerio, G. (2011). 1923 Gleno Dam break: case study and numerical modelling, Journal Hydraulic Engineering, 137(4), 480-492. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000327
- Rahou, I.; Korichi, K. (2023). Comparative analysis of numerical solutions of 2D unsteady dam break waves using FVM and SPH method. Journal of Hydrology and Hydromechanics, 71(3), 305-315. https://doi.org/10.2478/johh-2023-0005
- Ritter, A. (1892). Die fortpfazung der wasser-wellen Zeitschrift des Vereins, Deutscher Ingenieure. 36(33), 947-954.
- Schoklitsch, A. (1917). Ueber Dammbruchwellen. Sitzungsberichte der Kaiserlichen Akademie Wissenschaften, Viennal, 126, 1489-1514.
- Soares Frazao, S.; Testa, G. (1999). The Toce River test case: numerical results analysis. In: Proceedings of the 3rd CADAMWorkshop, Milan, Italy.
- Soleymani, S.; Golkar, H.; Yazid, H.; Tavousi, M. (2015). Numerical modeling of dam failure phenomenon using software and finite difference method, Journal of Materials and Environmental Science, 6(11), 3143-3158.
- Stoker, J. J. (1957). Water Waves. Interscience Publishers Inc., Wiley and Sons, New York, NY, U.S.A.
- Torbi, H.; Boushaba, F.; Yachoutti, A.; Salhi, N. (2019). Numerical modeling of dam-break problems 1-D on dry bed, ICAMOP Journal, 1(1), 29–32.
- Tseng, M.-H., and Chu, C.-R. (2000). “The simulation of dam-break flows by an improved predictor–corrector TVD scheme.” Advances in Water Resources, 23(7), 637–643. https://doi.org/10.1016/S0309-1708(99)00051-2
- U.S. Waterways Experiment Station (WES), 1960.
- Investigation of flow caused by sudden release of water in a horizontal rectangular channel.
- Technical Report No. 2-144, Vicksburg, Mississippi, USA.
- Wu, G.; He, Z.; Liu, G. (2014). Development of a Cell-Centered Godunov-Type Finite Volume Model for Shallow Water Flow Based on Unstructured Mesh, Mathematical Problems in Engineering, 2014, 257915, http://dx.doi.org/10.1155/2014/257915.
- Xia, J.; Falconer, R. A.; Lin, B.; Tan, G. (2010). Modelling flood routing on initially dry beds with the refined treatment of wetting and drying, International Journal of River Basin Management, 8(3–4), 225–243. https://doi.org/10.1080/15715124.2010.502121
- You, L.; Li, C.; Min, X.; Xiaolei, T. (2012). Review of Dam-break Research of Earth-rock Dam Combining with Dam Safety Management, Procedia Engineering, 28, 382–388. https://doi.org/10.1016/j.proeng.2012.01.737.
- Zendrato, N.-L.-H.; Harlan, D.; Adityawan, M.-B. S.; Natakusumah, D.-K. (2019). 1D numerical modelling of dam break using finite element method. MATEC Web of Conferences, 270, 04022. https://doi.org/10.1051/matecconf/201927004022.
- Zokagoa, J.-M.; Soulaïmani, A. (2010). Modeling of wetting–drying transitions in free-surface flows over complex topographies, Computer Methods in Applied Mechanics and Engineering, 199, 2281-2304.