Numerical simulation of dam-break flow using a modified Runge-Kutta scheme with validation
Numerična simulacija toka ob porušitvi pregrade z uporabo modificirane sheme Runge-Kutta z validacijo
- Avtorji: Lamia Touazi, Tahar Ikni, Ali Berreksi
- Citat: Acta hydrotechnica, vol. 38, no. 69, pp. 65-85, 2025. https://doi.org/10.15292/acta.hydro.2025.06
- Povzetek: V članku je predstavljena numerična shema, ki temelji na metodi Runge‒Kutta drugega reda v kombinaciji s prostorsko diskretizacijo z metodo končnih razlik za simulacijo tokov ob porušitvi pregrade, ki jih opisujejo enodimenzionalne Saint-Venantove enačbe. Predlagana metoda uvaja razdelitev toka v kombinaciji z umetnim, viskoznim členom, ki temelji na prejšnjem delu, da bi se izboljšala numerična stabilnost in natančnost rezultatov. Izvedena je primerjalna analiza med klasično in modificirano shemo Runge‒Kutta drugega reda, pri čemer se kot referenca uporabi analitična rešitev. Rezultati kažejo, da se modificirana shema bistveno bolje ujema z analitično rešitvijo. Metoda se nato uporabi za več scenarijev porušitve pregrade, vključno z zahtevnimi pogoji, kot so trikotne in trapezne ovire, nagnjeno dno in prehodi med suhim in mokrim dnom. Numerični rezultati so primerjani z eksperimentalnimi podatki in rezultati simulacij, objavljenimi v strokovni literaturi. V vseh primerih se modificirana shema izkaže kot učinkovitejša, kar potrjuje njeno robustnost in natančnost pri modeliranju širjenja vala ob porušitvi pregrade v zahtevnih hidravličnih pogojih.
- Ključne besede: Porušitev pregrade, Saint-Venant, modeliranje, klasična shema Runge‒Kutta, trenje, modificirana shema Runge‒Kutta.
- Polno besedilo: a38lt.pdf
- Viri:
- Al-Ansari, N.; Adamo, N.; Issa, I. E.; Sissakian, V. K.; Knutsson, S. (2015). Mystery of Mosul Dam the Most Dangerous Dam in the World: Dam Failure and its Consequences, Journal of Earth Sciences and Geotechnical Engineering, 5(3), 95-111.
- Azeez, O.; Elfeki, A.; Kamis, A. S.; Chaabani, A. (2020). Dam-break analysis and flood disaster simulation in arid urban environment: the Um Al-Khair dam case study, Jeddah, Saudi Arabia. Natural Hazards, 100(3), 995-1011. https://doi.org/10.1007/s11069-019-03836-5.
- Bellos, V.; Hrissanthou, V. (2011). Numerical simulation of a dam-break flood wave, European Water, 33, 45-53.
- Berreksi, A.; Ikni, T.; Benmamar, S.; Amara, L.; Hamchaoui, S.; Benzerra, A.; Remini, B. (2022). Numerical study using an implicit finite difference scheme of a high velocity flow crossing a non-prismatic hydraulic structure – case of symmetrical gradual expansion, International Journal of Hydrology Science and Technology, 14(2), 109–123. doi: 10.1504/IJHST.2022.124544.
- Cannata, M.; Marzocchi, R. (2012). Two-dimensional dam break flooding simulation: a GIS-embedded approach, Natural Hazards, 61, 1143-1159. https://doi.org/10.1007/s11069-011-9974-6
- Castro-Orgaz, O.; Chanson, H. (2017). Ritter’s dry-bed dam-break flows: positive and negative wave dynamics, Environmental Fluid Mechanics, 17, 665-694, https://doi.org/10.1007/s10652-017-9512-5
- Chang, T. J.; Kao, H. M.; Chang, K. H.; Hsu, M. H. (2011). Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics, Journal of Hydrology, 408(1-2), 78-90.
- Chanson, H. (2004). The Hydraulics of Open Channel Flows: An Introduction. Butterworth-Heinemann, Oxford, UK, 2nd edition, 630 p.
- Chanson, H. (2005). Applications of the Saint-Venant equations and method of characteristics to the dam break wave problem, Report No. CH55/05, Department of Civil Engineering, The University of Queensland, Brisbane, Australia, May, 135 p. https://doi.org/10.14264/9438
- Chen, A. S.; Hsu, M. H.; Chen, T. S.; Chang, T. J. (2005). An integrated inundation model for highly developed urban areas, Water Science and Technology, 51, 221-229.
- Das, S. K.; Bagheri, J. (2015). Modelling of shallow-water equations by using compact MacCormack-type schemes with application to dam-break problem, International Journal of Advances in Applied Mathematics and Mechanics, 2(3), 60-71.
- García-Martínez, R.; González-Ramírez, H.; O’Brien, J. S. (2009). Dam-break flood routing. WIT Transactions on State of the Art in Science and Engineering, Vol. 36. WIT Press, Southampton, UK. ISSN 1755-8336 (online). https://doi.org/10.2495/978-1-84564-142-9/04.
- García-Navarro, P.; Brufau, P.; Burguete, J.; Murillo, J. (2008). The shallow water equations: An example of hyperbolic system. Monografias de la Real Academia de Ciencias de Zaragoza, Fluid Mechanics, CPS. University of Zaragoza. 50018 Zaragoza, Spain, 31, 89-119.
- Gu, S.; Zheng, X.; Ren, L.; Xie, H.; Huang, Y.; Wei, J.; Shao, S. (2017). SWESPHysics simulation of dam break flows at South-Gate Gorges Reservoir, Water, 9(6), 387-407. https://doi.org/10.3390/w9060387
- Hsu, C.-T.; Yeh, K.-C. (2002). Iterative explicit simulation of 1D surges and dam-break flows, International Journal of Numerical Methods in Fluids, 38, 647-675, https://doi.org/10.1002/fld.236.
- Ikni, T.; Berreksi, A.; Hamidou, M.; Belhocine, M.; Nebbar, M. L.; Benkadja, R. (2018). Contribution to the study of the dam break wave propagation via finite differences formulations, Larhyss Journal, 33, 169-188.
- Ikni, T.; Berreksi, A.; Touazi, L.; Belhocine, M. (2024a). Lax-Friedrichs numerical scheme for simulating the failure wave of a dam in the presence of obstacles, Larhyss Journal, 57, 175-185.
- Ikni, T.; Berreksi, A.; Bennacer, L. (2024b). One-dimensional numerical simulation of dam failure, Studies in Engineering and Exact Sciences, 5(2), 1-22.
- IMPACT, EC Contract EVG1-CT-2001-00037. Investigation of Extreme Flood Processes and Uncertainties, 2004, http://www.impact-project.net/.
- Kirstetter, G.; Delestre, O.; Lagree, P.-Y.; Popinet, S.; Josserand, C. (2021). B-flood 1.0: an open-source Saint-Venant model for flash flood simulation using adaptive refinement, Geosientific Model Development Discussions, https://doi.org/10.5194/gmd-2021-15
- Lai, W.; Khan, A. A. (2012). Discontinuous Galerkin Method for 1D Shallow Water Flows in Natural Rivers, Engineering Applications of Computational Fluid Mechanics, 6, 1, 74-86, https://doi.org/10.1080/19942060.2012.11015404
- Lim, M.; Ginting, B. M.; Senjaya, T.; Kieswanti, C. (2024). Comparison of 1D, coupled 1D–2D, and 2D shallow water numerical modeling for dam-break flow analysis of Way-Ela dam, Indonesia. Acta Hydrotechnica, 27‑50. https://doi.org/10.15292/acta.hydro.2024.02
- Magdalena, I.; Pebriansyah, M. F. E. (2022). Numerical treatment of finite difference method for solving dam break model on a wet-dry bed with an obstacle. Results in Engineering, 14, 100382.
- Maghsoodi, R.; Khademalrasoul, A.; Sarkardeh, H. (2022). 3D numerical simulation of dam-break flow over different obstacles in a dry bed, Water Supply, 22(4), 4015. https://doi.org/10.2166/ws.2022.031.
- Maitsa, T.-R.; Mardika, M.-G.-I.; Adityawan, M.-B.; Harlan, D.; Kusumastuti, D.; Kuntoro, A.-A. (2020). 2D numerical simulation of urban dam break and its effect to building using Lax scheme with numerical filter. E3S Web of Conferences, 156, 04003. https://doi.org/10.1051/e3sconf/202015604003.
- Mohapatra, P.K.; Bhallamudi, S.M. (1996). Computation of a dam-break flood wave in channel transitions, Advances in Water Resources, 19(3), 181–187,
- Mohsenabadi, S. E.; Nistor, I.; Mohammadian, A.; Kheirkhah Gildeh, H. (2023). CFD modelling of initial stages of dam-break flow, Canadian Journal of Civil Engineering, 50(10), 838–852. https://doi.org/10.1139/cjce-2021-0493
- Ozmen Cagatay, H.; Kocaman, S. (2011). Dam Break Flow in the Presence of Obstacle: Experiment and CFD Simulation, Engineering Applications of Computational Fluid Mechanics, 5( 4), 541–552. https://doi.org/10.1080/19942060.2011.11015393
- Pilotti, M.; Maranzoni, A.; Tomirotti, M.; Valerio, G. (2011). 1923 Gleno Dam break: case study and numerical modelling, Journal Hydraulic Engineering, 137(4), 480-492. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000327
- Rahou, I.; Korichi, K. (2023). Comparative analysis of numerical solutions of 2D unsteady dam break waves using FVM and SPH method. Journal of Hydrology and Hydromechanics, 71(3), 305-315. https://doi.org/10.2478/johh-2023-0005
- Ritter, A. (1892). Die fortpfazung der wasser-wellen Zeitschrift des Vereins, Deutscher Ingenieure. 36(33), 947-954.
- Schoklitsch, A. (1917). Ueber Dammbruchwellen. Sitzungsberichte der Kaiserlichen Akademie Wissenschaften, Viennal, 126, 1489-1514.
- Soares Frazao, S.; Testa, G. (1999). The Toce River test case: numerical results analysis. In: Proceedings of the 3rd CADAMWorkshop, Milan, Italy.
- Soleymani, S.; Golkar, H.; Yazid, H.; Tavousi, M. (2015). Numerical modeling of dam failure phenomenon using software and finite difference method, Journal of Materials and Environmental Science, 6(11), 3143-3158.
- Stoker, J. J. (1957). Water Waves. Interscience Publishers Inc., Wiley and Sons, New York, NY, U.S.A.
- Torbi, H.; Boushaba, F.; Yachoutti, A.; Salhi, N. (2019). Numerical modeling of dam-break problems 1-D on dry bed, ICAMOP Journal, 1(1), 29–32.
- Tseng, M.-H., and Chu, C.-R. (2000). “The simulation of dam-break flows by an improved predictor–corrector TVD scheme.” Advances in Water Resources, 23(7), 637–643. https://doi.org/10.1016/S0309-1708(99)00051-2
- U.S. Waterways Experiment Station (WES), 1960.
- Investigation of flow caused by sudden release of water in a horizontal rectangular channel.
- Technical Report No. 2-144, Vicksburg, Mississippi, USA.
- Wu, G.; He, Z.; Liu, G. (2014). Development of a Cell-Centered Godunov-Type Finite Volume Model for Shallow Water Flow Based on Unstructured Mesh, Mathematical Problems in Engineering, 2014, 257915, http://dx.doi.org/10.1155/2014/257915.
- Xia, J.; Falconer, R. A.; Lin, B.; Tan, G. (2010). Modelling flood routing on initially dry beds with the refined treatment of wetting and drying, International Journal of River Basin Management, 8(3–4), 225–243. https://doi.org/10.1080/15715124.2010.502121
- You, L.; Li, C.; Min, X.; Xiaolei, T. (2012). Review of Dam-break Research of Earth-rock Dam Combining with Dam Safety Management, Procedia Engineering, 28, 382–388. https://doi.org/10.1016/j.proeng.2012.01.737.
- Zendrato, N.-L.-H.; Harlan, D.; Adityawan, M.-B. S.; Natakusumah, D.-K. (2019). 1D numerical modelling of dam break using finite element method. MATEC Web of Conferences, 270, 04022. https://doi.org/10.1051/matecconf/201927004022.
- Zokagoa, J.-M.; Soulaïmani, A. (2010). Modeling of wetting–drying transitions in free-surface flows over complex topographies, Computer Methods in Applied Mechanics and Engineering, 199, 2281-2304.