Multi-criteria decision analysis for evaluation of stormwater control measures
- Authors: Matej Radinja
- Citation: Acta hydrotechnica, vol. 38, no. 69, pp. 87-101, 2025. https://doi.org/10.15292/acta.hydro.2025.07
- Abstract: Stormwater control measures (SCMs) are technical elements designed to prevent and mitigate the negative effects of uncontrolled stormwater runoff. Different types of SCM can provide various co-benefits to the surrounding urban environment, making it important to select the most appropriate measure. This study presents a multi-criteria decision analysis (MCDA) framework for evaluating SCMs based on their optimized design parameters. Six SCM types – bio-retention cells, rain gardens, green roofs, infiltration trenches, detention ponds, and storage tanks – were optimized for a single objective: catchment outflow reduction. The resulting designs were evaluated using MCDA, incorporating additional performance criteria including capital expenditure (CAPEX), operating expenses (OPEX), land take, retained water, detained water, and plant space. The compromise programming method was applied to rank SCM scenarios based on their proximity to an ideal solution. Results indicate that landscape-integrated SCMs, particularly detention ponds, offer the most balanced performance, combining low costs with high co-benefits. Building-integrated SCMs, such as green roofs and rainwater-harvesting storage tanks, scored moderately, while underground storage tanks – representing grey infrastructure – performed the worst due to high costs and lack of co-benefits. The proposed evaluation framework enables transparent, criteria-based comparison of SCMs and supports informed decision-making in urban stormwater planning.
- Keywords: Urban drainage, climate change, surface runoff, blue-green infrastructure, co-benefits.
- Full text: a38mr.pdf
- References:
- Alves, A., Gersonius, B., Sanchez, A., Vojinovic, Z., Kapelan, Z. (2018). Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits. Water Resources Management. https://doi.org/10.1007/s11269-018-1943-3.
- Alves, A., Vojinovic, Z., Kapelan, Z., Sanchez, A., Gersonius, B. (2020). Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Science of The Total Environment 703, 134980. https://doi.org/10.1016/J.SCITOTENV.2019.134980.
- André, F. J., Romero, C. (2008). Computing compromise solutions: On the connections between compromise programming and composite programming. Appl. Math. Comput. 195, 1–10.
- Beyer, H.-G., Schwefel, H.-P. (2002). Evolution strategies – A comprehensive introduction. Nat Comput 1(1), 3–52. https://doi.org/10.1023/A:1015059928466.
- Chow, J. F., Savić, D., Fortune, D., Kapelan, Z., Mebrate, N. (2014). Using a systematic, multi-criteria decision support framework to evaluate sustainable drainage designs. Procedia Eng 70, 343–352. https://doi.org/10.1016/j.proeng.2014.02.039.
- Chui, T. F. M., Liu, X., Zhan, W. (2016). Assessing cost-effectiveness of specific LID practice designs in response to large storm events. J Hydrol (Amst) 533, 353–364. https://doi.org/10.1016/j.jhydrol.2015.12.011.
- Džeroski, S., Todorovski, L., Čerepnalkoski, D., Tanevski, J., Simidjievski, N. (2020). Process-based modelling tool (ProBMoT) [WWW Document]. URL http://probmot.ijs.si/ (accessed 1.7.19).
- Eckart, K., McPhee, Z., Bolisetti, T. (2018). Multiobjective optimization of low impact development stormwater controls. J Hydrol (Amst) 562, 564–576. https://doi.org/10.1016/j.jhydrol.2018.04.068.
- El Hattab, M. H., Theodoropoulos, G., Rong, X., Mijic, A. (2020). Applying the Systems Approach to Decompose the SuDS Decision-Making Process for Appropriate Hydrologic Model Selection. Water (Basel). https://doi.org/10.3390/w12030632.
- Hajkowicz, S., Collins, K. (2007). A Review of Multiple Criteria Analysis for Water Resource Planning and Management. Water Resources Management 21(9), 1553–1566. https://doi.org/10.1007/s11269-006-9112-5.
- Kourtis, I. M., Tsihrintzis, V. A., Baltas, E. (2020). A robust approach for comparing conventional and sustainable flood mitigation measures in urban basins. J Environ Manage 269, 110822. https://doi.org/10.1016/J.JENVMAN.2020.110822.
- Li, J., Deng, C., Li, Ya, Li, Yajiao, Song, J. (2017). Comprehensive Benefit Evaluation System for Low-Impact Development of Urban Stormwater Management Measures. Water Resources Management 31(15), 4745–4758. https://doi.org/10.1007/s11269-017-1776-5.
- Marttunen, M., Lienert, J., Belton, V. (2017). Structuring problems for Multi-Criteria Decision Analysis in practice: A literature review of method combinations. Eur J Oper Res 263(1), 1–17. https://doi.org/10.1016/j.ejor.2017.04.041.
- McClymont, K., Fernandes Cunha, D. G., Maidment, C., Ashagre, B., Vasconcelos, A. F., Batalini de Macedo, M., Nóbrega dos Santos, M. F., Gomes Júnior, M. N., Mendiondo, E. M., Barbassa, A. P., Rajendran, L., Imani, M. (2020). Towards urban resilience through Sustainable Drainage Systems: A multi-objective optimisation problem. J Environ Manage 275, 111173. https://doi.org/10.1016/j.jenvman.2020.111173.
- Morales-Torres, A., Escuder-Bueno, I., Andrés-Doménech, I., Perales-Momparler, S. (2016). Decision Support Tool for energy-efficient, sustainable and integrated urban stormwater management. Environmental Modelling & Software 84, 518–528. https://doi.org/10.1016/j.envsoft.2016.07.019.
- Radinja, M., Comas, J., Corominas, L., Atanasova, N. (2019). Assessing stormwater control measures using modelling and a multi-criteria approach. J Environ Manage 243, 257–268. https://doi.org/10.1016/j.jenvman.2019.04.102.
- Radinja, M., Škerjanec, M., Džeroski, S., Todorovski, L., Atanasova, N. (2021a). Design and Simulation of Stormwater Control Measures Using Automated Modeling. Water (Basel). https://doi.org/10.3390/w13162268.
- Radinja, M., Škerjanec, M., Šraj, M., Džeroski, S., Todorovski, L., Atanasova, N. (2021b). Automated modelling of urban runoff based on domain knowledge and equation discovery. J Hydrol (Amst) 603(Part C), 127077. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.127077.
- Ringuest, J. L. (1992). Compromise Programming BT - Multiobjective Optimization: Behavioral and Computational Considerations, in: Ringuest, J. L. (Ed.). Springer US, Boston, MA, 51–59. https://doi.org/10.1007/978-1-4615-3612-3_4.
- Rossman, L. A. (2015). Storm Water Management Model User’s Manual Version 5.1. United States Environment Protection Agency (September), 353. https://doi.org/PNR61.
- Uda, M., Kennedy, C., Van Seters, T., Graham, C., Rocha, L. (2013). Assessment of Life Cycle Costs for Low Impact Development Stormwater Management Practices. Toronto and Region Conservation Authority.
- U.S. Environmental Protection Agency (2015). Low Impact Development Stormwater Control Cost Estimation Analysis.
- Vozelj, U., Šraj, M., Bezak, N. (2023). Analysis of the Impact of Green Infrastructure on Surface Runoff From an Urban Area. Acta Hydrotechnica 36(65), 111–121. https://doi.org/10.15292/acta.hydro.2023.07.
- Wang, M., Sweetapple, C., Fu, G., Farmani, R., Butler, D. (2017). A framework to support decision making in the selection of sustainable drainage system design alternatives. J Environ Manage 201, 145–152. https://doi.org/10.1016/J.JENVMAN.2017.06.034.
- Yang, W., Zhang, J. (2021). Assessing the performance of gray and green strategies for sustainable urban drainage system development: A multi-criteria decision-making analysis. J Clean Prod 293, 126191. https://doi.org/10.1016/j.jclepro.2021.126191.
- Yu, P. L. (1973). A Class of Solutions for Group Decision Problems. Manage Sci 19(8), 936–946. https://doi.org/10.1287/mnsc.19.8.936.
- Zelany, M. (1974). A concept of compromise solutions and the method of the displaced ideal. Comput Oper Res 1(3), 479–496. https://doi.org/https://doi.org/10.1016/0305-0548(74)90064-1.
- Zhu, Yuxin, Li, H., Yang, B., Zhang, Xue, Mahmud, S., Zhang, Xiaochun, Yu, B., Zhu, Yaoting (2021). Permeable pavement design framework for urban stormwater management considering multiple criteria and uncertainty. J Clean Prod 293, 126114. https://doi.org/10.1016/j.jclepro.2021.126114.