Multi-criteria decision analysis for evaluation of stormwater control measures
Večkriterijska odločitvena analiza za vrednotenje ukrepov za obvladovanje padavinskih voda
- Avtorji: Matej Radinja
- Citat: Acta hydrotechnica, vol. 38, no. 69, pp. 87-101, 2025. https://doi.org/10.15292/acta.hydro.2025.07
- Povzetek: Ukrepi za obvladovanje padavinskih voda (UOPV) so inženirski objekti, namenjeni preprečevanju in blažitvi negativnih posledic nenadzorovanega površinskega odtoka. Raznovrstni UOPV lahko zagotovijo različne vrste dodatnih koristi v urbanem okolju, zato je ključna izbira najprimernejšega ukrepa. Ta študija predstavlja okvir večkriterijske odločitvene analize za vrednotenje UOPV na podlagi njihovih optimiziranih karakteristik. Šest vrst UOPV – bioretenzijske enote, deževni vrtovi, zelene strehe, infiltracijski jarki, suhi zadrževalniki in zbiralniki – je bilo optimiziranih s ciljem zmanjšanja odtoka iz prispevnega območja. Optimizirani ukrepi so bili ovrednoteni z večkriterijsko odločitveno analizo, ki vključuje dodatne kriterije učinkovitosti: investicijske stroške, obratovalne stroške, potrebno površino, shranjeno vodo, zadržano vodo in prostor za rastline. Z metodo kompromisnega programiranja so bili scenariji UOPV nato razvrščeni glede na njihovo odstopanje od idealne rešitve. Rezultati kažejo, da so najbolj učinkoviti v krajino vključeni ukrepi, zlasti suhi zadrževalniki, saj združujejo manjše stroške z visokimi dodatnimi koristmi. V objekte vključeni ukrepi, kot so zelene strehe in zbiralniki deževnice, so dosegli zmerne rezultate, medtem ko so podzemni zbiralniki (tj. siva infrastruktura) zaradi visokih stroškov in pomanjkanja dodatnih koristi dosegli najslabše rezultate. Predlagani okvir omogoča pregledno primerjavo UOPV na podlagi kriterijev in podpira informirano odločanje pri načrtovanju urbane odvodnje.
- Ključne besede: Urbana odvodnja, podnebne spremembe, površinski odtok, modro-zelena infrastruktura, dodatne koristi.
- Polno besedilo: a38mr.pdf
- Viri:
- Alves, A., Gersonius, B., Sanchez, A., Vojinovic, Z., Kapelan, Z. (2018). Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits. Water Resources Management. https://doi.org/10.1007/s11269-018-1943-3.
- Alves, A., Vojinovic, Z., Kapelan, Z., Sanchez, A., Gersonius, B. (2020). Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Science of The Total Environment 703, 134980. https://doi.org/10.1016/J.SCITOTENV.2019.134980.
- André, F. J., Romero, C. (2008). Computing compromise solutions: On the connections between compromise programming and composite programming. Appl. Math. Comput. 195, 1–10.
- Beyer, H.-G., Schwefel, H.-P. (2002). Evolution strategies – A comprehensive introduction. Nat Comput 1(1), 3–52. https://doi.org/10.1023/A:1015059928466.
- Chow, J. F., Savić, D., Fortune, D., Kapelan, Z., Mebrate, N. (2014). Using a systematic, multi-criteria decision support framework to evaluate sustainable drainage designs. Procedia Eng 70, 343–352. https://doi.org/10.1016/j.proeng.2014.02.039.
- Chui, T. F. M., Liu, X., Zhan, W. (2016). Assessing cost-effectiveness of specific LID practice designs in response to large storm events. J Hydrol (Amst) 533, 353–364. https://doi.org/10.1016/j.jhydrol.2015.12.011.
- Džeroski, S., Todorovski, L., Čerepnalkoski, D., Tanevski, J., Simidjievski, N. (2020). Process-based modelling tool (ProBMoT) [WWW Document]. URL http://probmot.ijs.si/ (accessed 1.7.19).
- Eckart, K., McPhee, Z., Bolisetti, T. (2018). Multiobjective optimization of low impact development stormwater controls. J Hydrol (Amst) 562, 564–576. https://doi.org/10.1016/j.jhydrol.2018.04.068.
- El Hattab, M. H., Theodoropoulos, G., Rong, X., Mijic, A. (2020). Applying the Systems Approach to Decompose the SuDS Decision-Making Process for Appropriate Hydrologic Model Selection. Water (Basel). https://doi.org/10.3390/w12030632.
- Hajkowicz, S., Collins, K. (2007). A Review of Multiple Criteria Analysis for Water Resource Planning and Management. Water Resources Management 21(9), 1553–1566. https://doi.org/10.1007/s11269-006-9112-5.
- Kourtis, I. M., Tsihrintzis, V. A., Baltas, E. (2020). A robust approach for comparing conventional and sustainable flood mitigation measures in urban basins. J Environ Manage 269, 110822. https://doi.org/10.1016/J.JENVMAN.2020.110822.
- Li, J., Deng, C., Li, Ya, Li, Yajiao, Song, J. (2017). Comprehensive Benefit Evaluation System for Low-Impact Development of Urban Stormwater Management Measures. Water Resources Management 31(15), 4745–4758. https://doi.org/10.1007/s11269-017-1776-5.
- Marttunen, M., Lienert, J., Belton, V. (2017). Structuring problems for Multi-Criteria Decision Analysis in practice: A literature review of method combinations. Eur J Oper Res 263(1), 1–17. https://doi.org/10.1016/j.ejor.2017.04.041.
- McClymont, K., Fernandes Cunha, D. G., Maidment, C., Ashagre, B., Vasconcelos, A. F., Batalini de Macedo, M., Nóbrega dos Santos, M. F., Gomes Júnior, M. N., Mendiondo, E. M., Barbassa, A. P., Rajendran, L., Imani, M. (2020). Towards urban resilience through Sustainable Drainage Systems: A multi-objective optimisation problem. J Environ Manage 275, 111173. https://doi.org/10.1016/j.jenvman.2020.111173.
- Morales-Torres, A., Escuder-Bueno, I., Andrés-Doménech, I., Perales-Momparler, S. (2016). Decision Support Tool for energy-efficient, sustainable and integrated urban stormwater management. Environmental Modelling & Software 84, 518–528. https://doi.org/10.1016/j.envsoft.2016.07.019.
- Radinja, M., Comas, J., Corominas, L., Atanasova, N. (2019). Assessing stormwater control measures using modelling and a multi-criteria approach. J Environ Manage 243, 257–268. https://doi.org/10.1016/j.jenvman.2019.04.102.
- Radinja, M., Škerjanec, M., Džeroski, S., Todorovski, L., Atanasova, N. (2021a). Design and Simulation of Stormwater Control Measures Using Automated Modeling. Water (Basel). https://doi.org/10.3390/w13162268.
- Radinja, M., Škerjanec, M., Šraj, M., Džeroski, S., Todorovski, L., Atanasova, N. (2021b). Automated modelling of urban runoff based on domain knowledge and equation discovery. J Hydrol (Amst) 603(Part C), 127077. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.127077.
- Ringuest, J. L. (1992). Compromise Programming BT - Multiobjective Optimization: Behavioral and Computational Considerations, in: Ringuest, J. L. (Ed.). Springer US, Boston, MA, 51–59. https://doi.org/10.1007/978-1-4615-3612-3_4.
- Rossman, L. A. (2015). Storm Water Management Model User’s Manual Version 5.1. United States Environment Protection Agency (September), 353. https://doi.org/PNR61.
- Uda, M., Kennedy, C., Van Seters, T., Graham, C., Rocha, L. (2013). Assessment of Life Cycle Costs for Low Impact Development Stormwater Management Practices. Toronto and Region Conservation Authority.
- U.S. Environmental Protection Agency (2015). Low Impact Development Stormwater Control Cost Estimation Analysis.
- Vozelj, U., Šraj, M., Bezak, N. (2023). Analysis of the Impact of Green Infrastructure on Surface Runoff From an Urban Area. Acta Hydrotechnica 36(65), 111–121. https://doi.org/10.15292/acta.hydro.2023.07.
- Wang, M., Sweetapple, C., Fu, G., Farmani, R., Butler, D. (2017). A framework to support decision making in the selection of sustainable drainage system design alternatives. J Environ Manage 201, 145–152. https://doi.org/10.1016/J.JENVMAN.2017.06.034.
- Yang, W., Zhang, J. (2021). Assessing the performance of gray and green strategies for sustainable urban drainage system development: A multi-criteria decision-making analysis. J Clean Prod 293, 126191. https://doi.org/10.1016/j.jclepro.2021.126191.
- Yu, P. L. (1973). A Class of Solutions for Group Decision Problems. Manage Sci 19(8), 936–946. https://doi.org/10.1287/mnsc.19.8.936.
- Zelany, M. (1974). A concept of compromise solutions and the method of the displaced ideal. Comput Oper Res 1(3), 479–496. https://doi.org/https://doi.org/10.1016/0305-0548(74)90064-1.
- Zhu, Yuxin, Li, H., Yang, B., Zhang, Xue, Mahmud, S., Zhang, Xiaochun, Yu, B., Zhu, Yaoting (2021). Permeable pavement design framework for urban stormwater management considering multiple criteria and uncertainty. J Clean Prod 293, 126114. https://doi.org/10.1016/j.jclepro.2021.126114.