Comparison of flood hydrograph prediction between synthetic unit hydrograph methods and rain-on-grid model for Katulampa watershed, Indonesia
- Authors: Bobby Minola Ginting, Prilla Lidyana, Cleon Christopher, Doddi Yudianto, Xie Yuebo
- Citation: Acta hydrotechnica, vol. 36, no. 64, pp. 81-94, 2023. https://doi.org/10.15292/acta.hydro.2023.05
- Abstract: In this paper, 6 synthetic unit hydrograph (SUH) methods, namely Snyder, SCS, GAMA-1, ITB-1, ITB-2, and Nakayasu, were compared against a rain-on-grid model (HEC-RAS) for flood hydrograph prediction in the Katulampa watershed, Indonesia. HEC-RAS was used with an open-access, ~30 m resolution digital elevation model (DEM), i.e. the Advanced Land Observing Satellite (ALOS). The relative error of the hydrograph results (peak discharge and time-to-peak) were compared with the observed data, while the errors in the hydrograph’s shape were detected using the Root Mean Square Error (RMSE) and Pearson Product Moment Correlation (PPMC). We found that HEC-RAS could predict the flood hydrograph significantly more accurately than the SUH methods, yielding the RMSE value of 1.98 m3/s and the PPMC value of 0.93. This study remains an interesting example of how modern computational tool can improve the runoff prediction of conventional SUH methods.
- Keywords: DEM, Katulampa, synthetic unit hydrograph, HEC-RAS, rain-on-grid.
- Full text: a36bmg.pdf
- References:
- ALOS (2006). ALOS overview. URL https://www.eorc.jaxa.jp/ALOS/en/index_e.htm (accessed 01.06.2023).
- Andiese V.W. (2012). Pengujian metode hidrograf satuan sintetik GAMA I dalam analisis debit banjir rancangan DAS Bangga (Evaluating GAMA-I synthetic unit hydrograph for flood discharge analysis of Bangga watershed). Majalah Ilmiah Mektek, 1-19 (in Indonesian).
- Aydin, M., Bagatur, T. (2017). Usability of Nakayasu synthetic unit hydrograph method on Turkey’s small-scale basins. International Conference on Advances and Innovations in Engineering, 636-648.
- Azizian, A., Brocca, L. (2020). Determining the best remotely sensed DEM for flood inundation mapping in data sparse regions. International Journal of Remote Sensing, 41(5), 1884-1906. https://doi.org/10.1080/01431161.2019.1677968.
- Badan Standarisasi Nasional (2016). Standar Nasional Indonesia: Tata cara perhitungan debit banjir rencana. (Indonesian Standard: Procedures for flood discharge computation) (in Indonesian).
- Bhola, P.K., Leandro, J., Disse, M. (2019). Reducing uncertainties in flood inundation outputs of a 2-dimensional hydrodynamic model by constraining roughness. Natural Hazards and Earth System Sciences, 19(7), 1445–1457. https://doi.org/10.5194/nhess-19-1445-2019.
- Casulli, V. (2009). A high-resolution wetting and drying algorithm for free-surface hydrodynamics. International Journal for Numerical Methods Fluids, 60(4), 391-408. https://doi.org/10.1002/fld.1896.
- Chymyrov, A. (2021). Comparison of different DEMs for hydrological studies in the mountainous areas. The Egyptian Journal of Remote Sensing and Space Sciences, 24, 587-594. https://doi.org/10.1016/j.ejrs.2021.08.001.
- Costabile, P., Costanzo, C., Ferraro, D., Macchione, F., Petaccia, G. (2020). Performances of the new HEC-RAS version 5 for 2-D hydrodynamic-based rainfall-runoff simulations at basin scale: Comparison with a state-of-the art model. Water, 12(9), 2326. https://doi.org/10.3390/w12092326.
- David, A., Schmalz, B. (2020). Flood hazard analysis in small catchments: Comparison of hydrological and hydrodynamic approaches by the use of direct rainfall. Journal of Flood Risk Management, 13(4), 1-26. https://doi.org/10.1111/jfr3.12639.
- Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H.T., Verelst, L., Wiberg, D. (2008). Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy.
- Ginting, B.M., Mundani, R.-P. (2019). Parallel flood simulations for wet–dry problems using dynamic load balancing concept. Journal of Computing in Civil Engineering, 33(3), 1-18. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000823.
- Ginting, B.M., Yudianto, D., Willy, Ginting, A.H. (2021). Finding an optimum grid size for numerical simulations of dam-break flow using open-access digital elevation models. IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/832/1/012058.
- Harto, S. (1985). Hidrograf satuan sintetik GAMA I (GAMA I synthetic unit hydrograph). Badan Penerbit Departemen Pekerjaan Umum, Jakarta (in Indonesian).
- Hall, J. (2015). Direct rainfall flood modelling: The good, the bad and the ugly. Australian Journal of Water Resources, 19(1), 74-85. https://doi.org/10.7158/13241583.2015.11465458.
- Hariri, S., Weill, S., Gustedt, J., Charpentier, I. (2022). A balanced watershed decomposition method for rain-on-grid simulations in HEC-RAS. Journal of Hydroinformatics, 24(2), 315–332. https://doi.org/10.2166/hydro.2022.078.
- U.S. Army Corps of Engineer (2016). HEC-RAS Reference Manual.
- Jarihani, A.A., Callow, J.N., McVicar, T.R., Van Niel, T.G., Larsen, J.R. (2015). Satellite-derived digital elevation model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments. Journal of Hydrology, 524, 489-506. https://doi.org/10.1016/j.jhydrol.2015.02.049.
- Kristianto, A.B., Norken, N., Bagus, G., Dharma, S., Mawiti, D., Yekti, I. (2019). Komparasi model hidrograf satuan terukur dengan hidrograf satuan sintetis (studi kasus DAS Tukas Pakerisan) (Comparison between observed and synthetic unit hydrographs: Case Study of Tukad Pakerisan watershed). Jurnal Spektran, 7(1), 21-31 (in Indonesian). https://ojs.unud.ac.id/index.php/jsn/article/view/47465.
- Lyne, V., Hollick, M. (1979). Stochastic time-variable rainfall-runoff modelling. Proceedings of the Hydrology and Water Resources Symposium. Institution of Engineers National Conference Publication, Perth, 89-92.
- Mireille, N.M., Mwangi, H.M., Mwangi, J.K., Gathenya, J.M. (2019). Analysis of land use change and its impact on the hydrology of Kakia and Esamburmbur sub-watersheds of Narok county, Kenya. Hydrology, 6(4). https://doi.org/10.3390/HYDROLOGY6040086.
- Munoth, P., Goyal, R. (2019). Effects of DEM source, spatial resolution and drainage area threshold values on hydrological modeling. Water Resources Management, 33, 3303-3319. https://doi.org/10.1007/s11269-019-02303-x.
- Muthusamy, M., Casado, M.R., Butler, D., Leinster, P. (2021). Understanding the effects of digital elevation model resolution in urban fluvial flood modelling. Journal of Hydrology, 596, 126088. https://doi.org/10.1016/j.ejrh.2022.101122.
- Natakusumah, D.K., Hatmoko, W., Harlan, D. (2011). Prosedur umum perhitungan hidrograf satuan sintetis dengan cara ITB dan beberapa contoh penerapannya (A general procedure for synthetic unit hydrograph ITB and its applications). Jurnal Teknik Sipil, 18(3), 251-291 (in Indonesian). https://doi.org/10.5614/jts.2011.18.3.6.
- National Agency for Disaster Countermeasure (2018). Data bencana Indonesia 2017 (Indonesian disaster data in 2017). Jakarta: Pusat Data, Informasi dan Humas BNPB, ISBN: 978-602-5693-04-5 (in Indonesian).
- Ponce, V.M. (1994). Engineering Hydrology: Principles and Practices. Prentice Hall, United Kingdom.
- Saksena, S., Merwade, V. (2015). Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping. Journal of Hydrology, 530, 180-194. https://doi.org/10.1016/j.jhydrol.2015.09.069.
- Salami, W., Bilewu, S., Ibitoye, B., Ayanshola, M. (2017). Runoff hydrographs using Snyder and SCS synthetic unit hydrograph methods: A case study of South West Nigeria. Journal of Ecological Engineering, 18(1), 25-34. https://doi.org/10.12911/22998993/66258.
- Senjaya, T., Yudianto, D., Yuebo, X., and Adidarma, W.K. (2020). Application of TRMM in the hydrological analysis of Upper Bengawan Solo river basin. Journal of the Civil Engineering Forum, 6 (3), 309. https://doi.org/10.22146/jcef.57125.
- Sherman, L.K. (1932). Stream flow from rainfall by the unit hydrograph method. Engineering News Record, 108, 501-505.
- Shustikova, I., Domeneghetti, A., Neal, J.C., Bates, P., Castellarin, A. (2019). Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrological Sciences Journal, 64(14), 1769-1782. https://doi.org/10.1080/02626667.2019.1671982.
- Singh, P.K., Mishra, S.K., Jain, M.K. (2014). A review of the synthetic unit hydrograph: from the empirical UH to advanced geomorphological methods. Hydrological Sciences Journal, 59(2), 239-261. https://doi.org/10.1080/02626667.2013.870664.
- Snyder, F.F. (1938). Synthetic unit hydrograph. Trans Am Geophysics Union, 19, 447-454.
- Soemarto, C.D. (1987). Hidrologi Teknik. Usaha Nasional, Surabaya.
- Soil Conservation Service (2002). Design of Hydrograph. US Department of Agriculture.
- Tesema, T.A. (2021). Impact of identical digital elevation model resolution and sources on morphometric parameters of Tena watershed, Ethiopia. Heliyon, 7, 1-9. https://doi.org/10.1016/j.heliyon.2021.e08345.
- Zeiger, S.J., Hubbart, J.A. (2021). Measuring and modeling event-based environmental flows: An assessment of HEC-RAS 2D rain-on-grid simulations. Journal of Environmental Management, 285, 112125. https://doi.org/10.1016/j.jenvman.2021.112125.