Comparison of flood hydrograph prediction between synthetic unit hydrograph methods and rain-on-grid model for Katulampa watershed, Indonesia
Primerjava napovedi poplavnega hidrograma med metodami sintetičnega hidrograma enote in modelom mrežnih padavin za povodje Katulampa, Indonezija
- Avtorji: Bobby Minola Ginting, Prilla Lidyana, Cleon Christopher, Doddi Yudianto, Xie Yuebo
- Citat: Acta hydrotechnica, vol. 36, no. 64, pp. 81-94, 2023. https://doi.org/10.15292/acta.hydro.2023.05
- Povzetek: V tem prispevku smo primerjali šest metod sintetičnih hidrogramov enote (SUH), tj. Snyder, SCS, GAMA-1, ITB-1, ITB-2 in Nakayasu, z modelom mrežnih padavin (HEC-RAS) za napoved poplavnega hidrograma v povodju Katulampa v Indoneziji. HEC-RAS je bil uporabljen z odprtodostopnim digitalnim modelom višine (DEM) z ločljivostjo ~30 m, tj. Advanced Land Observing Satellite (ALOS). Relativno napako rezultatov hidrograma (najvišji pretok in čas do vrha) smo primerjali z opazovanimi podatki, medtem ko smo napake v obliki hidrograma opazovali z uporabo korena povprečne kvadratne napake (RMSE) in Pearsonove korelacije produkta momentov (PPMC). Ugotovili smo, da lahko HEC-RAS napoveduje poplavni hidrogram bistveno natančneje kot metode SUH, saj poda vrednost RMSE 1,98 m3/s in vrednost PPMC 0,93. Ta raziskava dobro ponazarja, kako lahko sodobno računalniško orodje izboljša napoved odtoka z uporabo običajnih metod SUH.
- Ključne besede: DEM, Katulampa, sintetični hidrogram enote, HEC-RAS, mrežne padavine.
- Polno besedilo: a36bmg.pdf
- Viri:
- ALOS (2006). ALOS overview. URL https://www.eorc.jaxa.jp/ALOS/en/index_e.htm (accessed 01.06.2023).
- Andiese V.W. (2012). Pengujian metode hidrograf satuan sintetik GAMA I dalam analisis debit banjir rancangan DAS Bangga (Evaluating GAMA-I synthetic unit hydrograph for flood discharge analysis of Bangga watershed). Majalah Ilmiah Mektek, 1-19 (in Indonesian).
- Aydin, M., Bagatur, T. (2017). Usability of Nakayasu synthetic unit hydrograph method on Turkey’s small-scale basins. International Conference on Advances and Innovations in Engineering, 636-648.
- Azizian, A., Brocca, L. (2020). Determining the best remotely sensed DEM for flood inundation mapping in data sparse regions. International Journal of Remote Sensing, 41(5), 1884-1906. https://doi.org/10.1080/01431161.2019.1677968.
- Badan Standarisasi Nasional (2016). Standar Nasional Indonesia: Tata cara perhitungan debit banjir rencana. (Indonesian Standard: Procedures for flood discharge computation) (in Indonesian).
- Bhola, P.K., Leandro, J., Disse, M. (2019). Reducing uncertainties in flood inundation outputs of a 2-dimensional hydrodynamic model by constraining roughness. Natural Hazards and Earth System Sciences, 19(7), 1445–1457. https://doi.org/10.5194/nhess-19-1445-2019.
- Casulli, V. (2009). A high-resolution wetting and drying algorithm for free-surface hydrodynamics. International Journal for Numerical Methods Fluids, 60(4), 391-408. https://doi.org/10.1002/fld.1896.
- Chymyrov, A. (2021). Comparison of different DEMs for hydrological studies in the mountainous areas. The Egyptian Journal of Remote Sensing and Space Sciences, 24, 587-594. https://doi.org/10.1016/j.ejrs.2021.08.001.
- Costabile, P., Costanzo, C., Ferraro, D., Macchione, F., Petaccia, G. (2020). Performances of the new HEC-RAS version 5 for 2-D hydrodynamic-based rainfall-runoff simulations at basin scale: Comparison with a state-of-the art model. Water, 12(9), 2326. https://doi.org/10.3390/w12092326.
- David, A., Schmalz, B. (2020). Flood hazard analysis in small catchments: Comparison of hydrological and hydrodynamic approaches by the use of direct rainfall. Journal of Flood Risk Management, 13(4), 1-26. https://doi.org/10.1111/jfr3.12639.
- Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H.T., Verelst, L., Wiberg, D. (2008). Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy.
- Ginting, B.M., Mundani, R.-P. (2019). Parallel flood simulations for wet–dry problems using dynamic load balancing concept. Journal of Computing in Civil Engineering, 33(3), 1-18. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000823.
- Ginting, B.M., Yudianto, D., Willy, Ginting, A.H. (2021). Finding an optimum grid size for numerical simulations of dam-break flow using open-access digital elevation models. IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/832/1/012058.
- Harto, S. (1985). Hidrograf satuan sintetik GAMA I (GAMA I synthetic unit hydrograph). Badan Penerbit Departemen Pekerjaan Umum, Jakarta (in Indonesian).
- Hall, J. (2015). Direct rainfall flood modelling: The good, the bad and the ugly. Australian Journal of Water Resources, 19(1), 74-85. https://doi.org/10.7158/13241583.2015.11465458.
- Hariri, S., Weill, S., Gustedt, J., Charpentier, I. (2022). A balanced watershed decomposition method for rain-on-grid simulations in HEC-RAS. Journal of Hydroinformatics, 24(2), 315–332. https://doi.org/10.2166/hydro.2022.078.
- U.S. Army Corps of Engineer (2016). HEC-RAS Reference Manual.
- Jarihani, A.A., Callow, J.N., McVicar, T.R., Van Niel, T.G., Larsen, J.R. (2015). Satellite-derived digital elevation model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments. Journal of Hydrology, 524, 489-506. https://doi.org/10.1016/j.jhydrol.2015.02.049.
- Kristianto, A.B., Norken, N., Bagus, G., Dharma, S., Mawiti, D., Yekti, I. (2019). Komparasi model hidrograf satuan terukur dengan hidrograf satuan sintetis (studi kasus DAS Tukas Pakerisan) (Comparison between observed and synthetic unit hydrographs: Case Study of Tukad Pakerisan watershed). Jurnal Spektran, 7(1), 21-31 (in Indonesian). https://ojs.unud.ac.id/index.php/jsn/article/view/47465.
- Lyne, V., Hollick, M. (1979). Stochastic time-variable rainfall-runoff modelling. Proceedings of the Hydrology and Water Resources Symposium. Institution of Engineers National Conference Publication, Perth, 89-92.
- Mireille, N.M., Mwangi, H.M., Mwangi, J.K., Gathenya, J.M. (2019). Analysis of land use change and its impact on the hydrology of Kakia and Esamburmbur sub-watersheds of Narok county, Kenya. Hydrology, 6(4). https://doi.org/10.3390/HYDROLOGY6040086.
- Munoth, P., Goyal, R. (2019). Effects of DEM source, spatial resolution and drainage area threshold values on hydrological modeling. Water Resources Management, 33, 3303-3319. https://doi.org/10.1007/s11269-019-02303-x.
- Muthusamy, M., Casado, M.R., Butler, D., Leinster, P. (2021). Understanding the effects of digital elevation model resolution in urban fluvial flood modelling. Journal of Hydrology, 596, 126088. https://doi.org/10.1016/j.ejrh.2022.101122.
- Natakusumah, D.K., Hatmoko, W., Harlan, D. (2011). Prosedur umum perhitungan hidrograf satuan sintetis dengan cara ITB dan beberapa contoh penerapannya (A general procedure for synthetic unit hydrograph ITB and its applications). Jurnal Teknik Sipil, 18(3), 251-291 (in Indonesian). https://doi.org/10.5614/jts.2011.18.3.6.
- National Agency for Disaster Countermeasure (2018). Data bencana Indonesia 2017 (Indonesian disaster data in 2017). Jakarta: Pusat Data, Informasi dan Humas BNPB, ISBN: 978-602-5693-04-5 (in Indonesian).
- Ponce, V.M. (1994). Engineering Hydrology: Principles and Practices. Prentice Hall, United Kingdom.
- Saksena, S., Merwade, V. (2015). Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping. Journal of Hydrology, 530, 180-194. https://doi.org/10.1016/j.jhydrol.2015.09.069.
- Salami, W., Bilewu, S., Ibitoye, B., Ayanshola, M. (2017). Runoff hydrographs using Snyder and SCS synthetic unit hydrograph methods: A case study of South West Nigeria. Journal of Ecological Engineering, 18(1), 25-34. https://doi.org/10.12911/22998993/66258.
- Senjaya, T., Yudianto, D., Yuebo, X., and Adidarma, W.K. (2020). Application of TRMM in the hydrological analysis of Upper Bengawan Solo river basin. Journal of the Civil Engineering Forum, 6 (3), 309. https://doi.org/10.22146/jcef.57125.
- Sherman, L.K. (1932). Stream flow from rainfall by the unit hydrograph method. Engineering News Record, 108, 501-505.
- Shustikova, I., Domeneghetti, A., Neal, J.C., Bates, P., Castellarin, A. (2019). Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrological Sciences Journal, 64(14), 1769-1782. https://doi.org/10.1080/02626667.2019.1671982.
- Singh, P.K., Mishra, S.K., Jain, M.K. (2014). A review of the synthetic unit hydrograph: from the empirical UH to advanced geomorphological methods. Hydrological Sciences Journal, 59(2), 239-261. https://doi.org/10.1080/02626667.2013.870664.
- Snyder, F.F. (1938). Synthetic unit hydrograph. Trans Am Geophysics Union, 19, 447-454.
- Soemarto, C.D. (1987). Hidrologi Teknik. Usaha Nasional, Surabaya.
- Soil Conservation Service (2002). Design of Hydrograph. US Department of Agriculture.
- Tesema, T.A. (2021). Impact of identical digital elevation model resolution and sources on morphometric parameters of Tena watershed, Ethiopia. Heliyon, 7, 1-9. https://doi.org/10.1016/j.heliyon.2021.e08345.
- Zeiger, S.J., Hubbart, J.A. (2021). Measuring and modeling event-based environmental flows: An assessment of HEC-RAS 2D rain-on-grid simulations. Journal of Environmental Management, 285, 112125. https://doi.org/10.1016/j.jenvman.2021.112125.