An application of spectral graph partition for designing district metered areas in water supply networks
Uporaba metode spektralnega razbitja grafov za zasnovo merilnih območij v vodovodnem omrežju
- Avtorji: Daniel Kozelj, Marjan Gorjup, Marjeta Kramar Fijavž
- Citat: Acta hydrotechnica, vol. 30, no. 53, pp. 81-96, 2017.
- Povzetek: Pri upravljanju vodovodnih sistemov se spopadamo z velikim deležem neprodane vode, pri čemer največji delež odpade na dejanske vodne izgube. Za zmanjšanje količine neprodane vode lahko v vodovodnem sistemu oblikujemo merilna območja, kjer se na vtoku merita parametra tlak in pretok vode. Zasnova merilnih območij upravljalcem omogoča hitrejše ugotavljanje vodnih izgub in učinkovitejši nadzor nad delovanjem celotnega sistema. Prikazana je metoda za razdelitev kompleksnih vodovodnih omrežij na posamezna območja, ki uporablja algoritem za spektralno razbitje grafov. Za določitev ustreznih realnih rešitev smo vključili tudi hidravlične vhodne podatke. Opisano metodo smo testirali na realnem primeru.
- Ključne besede: vodovodni sistem, merilna območja, algoritem, teorija grafov, spektralno razbitje
- Polno besedilo: a30dk.pdf
- Viri:
- Alvisi, S., Franchini, M. (2014). Heuristic procedure for the automatic creation of district metered areas in water distribution systems, Urban Water Journal 11 (2), 137{159.
- Boulos, P. F., Lansey, K. E., Karney, B. W. (2006). Comprehensive water distribution systems analysis handbook for engineers and planners. MWH Soft, Inc., Pasadena, California, USA.
- De Paola, F., Fontana, N., Galdiero, E., Giugni, M., Sorgenti degli Uberti, G., Vitaletti, M. (2013). Optimal design of district metered areas in water distribution networks, 12th International Conference on Computing and Control for the Water Industry, CCWI2013"", Procedia Engineering 70, 449{457.
- Di Nardo, A., Di Natale, M., Guida, M., Musmarra, D. (2013). Water Network Protection from Intentional Contamination by Sectorization, Water Resources Management 27(6), 1837{1850.
- Diao, K., Zhou, Y., Rauch, W. (2013). Automated creation of district metered areas boundaries in water distribution systems, Journal of Water Resources Planning and Management 139 (2), 184{190.
- Eliades, D. G., Kyriakou, M., Stelios Vrachimis, S., and Polycarpou, M. M. (2016). EPANET-MATLAB Toolkit: An Open-Source Software for Interfacing EPANET with MATLAB, \14th International Conference on Computing and Control for theWater Industry, CCWI 2016"", Amsterdam, Netherlands, str. 8.
- Farley, M. (2001). Leakage management and control. A best practice training manual, World Health Organization, Geneva.
- Ferrari, G., Savic, D., and Becciu, G. (2014). Graph-Theoretic Approach and Sound Engineering Principles for Design of District Metered Areas,J. Water Resources Planning and Management 140 (12), 040140361{04014036-13.
- Galdiero, E. (2015). Multi-Objective Design of District Metered Areas in Water Distribution Networks, PhD Thesis, Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II.
- Gorjup, M. (2016). Uporaba teorije grafov za zasnovo merilnih obmo cij v vodovodnih omre zjih. Magistrsko delo, Univerza v Ljubljani, Fakulteta za gradbeni stvo in geodezijo, 68 str.
- Gomes, R., Sa Marques, A., Sousa, J. (2012). Identi cation of the optimal entry points at District Metered Areas and implementation of pressure management, Urban Water 9 (6), 365{384.
- Hajebi, S., Temate, S., Barrett, A., Clarke, A., Clarke, S. (2014). Distribution Network Sectorization Using Structure Partitioning and Multi-Objective Optimization, \16th Water Distribution System Analysis Conference, WDSA2014 { Urban Water Hydroinformatics and Strategic Planning"", Procedia Engineering 89, 1144{1151.
- Herrera, M., Izquierdo, J., Perez-Garcia, R., Montalvo, I. (2012). Multi-agent adaptive boosting on semi-supervised water supply clusters, Advances in Engineering Software 50, 131{136.
- Hespanha, J. (2004). An e cient MATLAB Algorithm for Graph Partitioning, Technical Report, University of California.
- MATLAB 2015b, The MathWorks, Inc., Natick, Massachusetts, United States.
- Meyer, C. (2000). Matrix analysis and applied linear algebra, SIAM, Philadelphia.
- Morrison, J. (2004). Managing leakage by District Metered Areas: A practical approach, Water 21 (2), 44{46.
- Morrison, J., Rogers, D., Tooms, S. (2007). District Metered Areas Guidance Notes, Water Loss Task Force, IWA Publication.
- Lambert, A (2003). Assessing non-revenue water and its components: A practical approach, Water 21, IWA, Issue 5.4, 50{51.
- Rossman, L. A. (2000). Epanet2 Users Manual. \U. S. Environmental Protection Agency, National Risk Management Research Laboratory"", Cincinnati, Ohio, USA.
- Sempewo, J., Pathirana, A., Vairavamoorthy, K. (2009). Spatial analysis tool for development of leakage control zones from the analogy of distributed computing, \Proc. 10th Annual Water Distribution Systems Analysis Conference (WDSA2008)"", Kruger National Park, South Africa, 1{15.
- Todini, E., Pilati, S. (1987). A gradient method for the analysis of pipe networks, International Conference on Computer Applications for Water Supply and Distribution, Leicester Polytechnic, UK.
- Todini, E. (2000). Looped water distribution networks design using a resilience index based heuristic approach, Urban Water 2, 115{122.
- Tzatchkov, V. G., Alcocer-Yamanaka, V. H., Bourguett-Ort z, V.J. (2006). Graph theory based algorithms for water distribution network sectorization projects, \Proc. 8th Annual Water Distribution Systems Analysis Symposium, WDSA 2006"", Cincinnati, Ohio, USA.
- Wilson, R.J., Watkins, J.J. (1997). Uvod v teorijo grafov. DMFA Slovenije.
- Zhong, S., Ghosh, J. (2003). Scalable balanced model-based clustering, \Proc.3rd SIAM Int. Conf. Data Minning"", San Francisco, California, USA, 71{82.