Application of Dual SPHysics code for 3D simulations of dam break - Comparison of computational times of central and graphics processing unit
Uporaba programa Dual SPHysics za 3D simulacije porušitve vodnega stolpca - Primerjava računskih časov procesorjev in grafične kartice
- Avtorji: Gorazd Novak, Gašper Rak, Matjaž Četina, Dušan Žagar
- Citat: Acta hydrotechnica, vol. 30, no. 53, pp. 97-105, 2017.
- Povzetek: Na področju računalniške dinamike tekočin se ob uveljavljenih metodah in modelih čedalje več pozornosti namenja metodi hidrodinamike zglajenih delcev SPH (angl. smoothed particle hydrodynamics). Za razliko od Eulerjevih metod, kjer simulacija toka temelji na numerični mreži, je SPH brezmrežna Lagrangeova metoda, ki tok simulira z delci in je zato primernejša za obravnavo tistih vrst toka s prosto gladino, kjer nastopajo izrazite spremembe gladin in hitrosti. Med najbolj značilnimi primeri uporabe SPH so simulacije porušitev vodnega stolpca in simulacije rušenja valov ob obali. Z uporabo najnovejše različice odprtokodnega programa Dual SPHysics, ki združuje C++ in paralelno računsko arhitekturo CUDA, so bili razpoložljivi standardni primeri izračunani z uporabo običajnega in zmogljivejšega procesorja (CPU) ter nato še z uporabo zmogljive grafične kartice (GPU). Primerjava trajanja izračunov je pokazala, da se računi z uporabo GPU izvedejo v povprečju do 70-krat hitreje kot na običajnem CPU in do 8-krat hitreje kot na zmogljivejšem CPU. Za ponazoritev uporabnosti metode SPH so bili izračunani dodatni primeri tridimenzionalne simulacije porušitve vodnega stolpca in obtekanja dolvodno ležečega objekta. S spreminjanjem vhodnih datotek obstoječih testnih primerov je možno simulirati širok nabor hidrodinamičnih problemov, pri katerih nastopa izrazito spreminjanje gladine.
- Ključne besede: SPH, Dual SPHysics, porušitev vodnega stolpca, 3D-tok s prosto gladino, računski čas, CPU, GPU
- Polno besedilo: a30gn.pdf
- Viri:
- Altomare, C., Crespo, A. J. C., Domínguez, J. M., Gómez-Gesteira, M., Suzuki, T., Verwaest, T. (2015). Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures. Coastal Engineering 96, 1–12.
- Bouscasse, B., Colagrossi, A., Marrone, S., Antuono, M. (2013). Nonlinear water wave interaction with floating bodies in SPH. Journal of Fluids and Structures 42, 112–129.
- Crespo, A. J. C., Dominguez, J. M., Barreiro, A., Gomez-Gesteira, M., Rogers, B. D. (2011). DualSPHysics, new GPU computing on SPH models. Proc. 6th International SPHERIC Workshop, Ed. T Rung & C Ulrich, Hamburg University of Technology (TUHH), 8‒9 June 2011, 348‒354.
- Domínguez, J. M., Crespo, A. J. C., Valdez-Balderas, D., Rogers, B. D. (2013). New multi-GPU implementation for smoothed particle hydrodynamics on heterogenous clusters. Computer Physics Communications 184, 1848–1860.
- Dual SPHysics (2017). http://www.dual.sphysics.org/ (pridobljeno 11. 9. 2017).
- Džebo, E. (2013). Simulacije valov zaradi porušitev pregrad z brezmrežno numerično metodo hidrodinamike zglajenih delcev (Simulations of dam-break waves with meshless numerical method of smoothed particle hydrodynamics). Unpublished Doctoral Thesis, Univerza v Ljubljani, FGG, 121 p. (in Slovenian).
- Fourtakas, G., Rogers, B. D. (2016). Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphic Processing Unit (GPU). Advances in Water Resources 92, 186–199.
- Gingold, R. A., Monaghan, J. J. (1977). Smoothed particle hydrodynamics. Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181, 375–389.
- Harada, T., Koshizuka, S., Kawaguchi, Y. (2007). Smoothed particle hydrodynamics on GPUs. Proc. Comput. Graph. Intl. 63–70.
- Hérault, A., Bilotta, G., Dalrymple, R. A. (2010). SPH on GPU with CUDA. Journal of Hydraulic Research 48 (Extra Issue), 74–79.
- Kolb, A., Cuntz, N. (2005). Dynamic particle coupling for GPU-based fluid simulation. Proc. 18th Symposium on Simulation Technique, 722–727.
- Lee, E. S., Violeau, D., Issa, R., Ploix, S. (2010). Application of weakly compressible and truly incompressible SPH to 3-D water collapse in waterworks. Journal of Hydraulic Research 48, 50– 60.
- Liu, G. R., Liu, M. B. (2003). Smoothed Particle Hydrodynamics – a meshfree particle method. World Scientific Publishing Co. Pte. Ltd., Singapore, 449 str.
- Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. The Astronomical Journal 82, 12, 1013–1024.
- Mokos, A., Rogers, B. D., Stansby, P. K., Domínguez, J. M. (2015). Multi-phase SPH modelling of violent hydrodynamics on GPUs. Computer Physics Communications 196, 304–316.
- Monaghan, J. J. (1994). Simulating Free Surface Flows with SPH. Journal of Computational Physics 110, 399–406.
- Morris, J. P., Zhu, Y., Fox, P. J. (1999). Parallel simulation of pore-scale flow through porous media. Computers and Geotechnics 25, 227–246.
- Ostanek Jurina, T., Šoško, H., Žagar, D. (2014). Comparison of trajectory and concentration methods in oil spill modelling at sea. Acta hydrotechnica 27(46), 43–56.
- Price, D. J. (2010). Smoothed Particle Hydrodynamics and Magnetohydrodynamics (lectures and tutorials). http://users.monash.edu.au/~dprice/SPH/price-spmhd.pdf (pridobljeno 15. 9. 2017).
- Petkovšek, G., Džebo, E., Četina, M., Žagar, D. (2010). Application of Non-Discrete Boundaries with Friction to Smoothed Particle Hydrodynamics. Journal of Mechanical Engineering 56, 307–315.
- Rajar, R., Četina, M. (2017). Calibration of Three-dimensional Model PCFLOW3D – A Comparison with Measurements from the Yatsushiro Sea and the Sea of Japan. Acta hydrotechnica 30(52), 37–50.
- Rogers, B. B. (2012). Basics of SPH – Engineering Approach. 2-day Short Course on Smoothed Particle Hydrodynamics (SPH) at the University of Manchester, February 2012. Manchester, 1–32.
- Rooney, E. A., Wei, W. Y., Irish, J. L., Weiss, R., Hérault, A., Dalrymple, R. A., Bilotta, G. (2011). Testing accuracy and convergence of GPUSPH for free-surface flows. 6th International SPHERIC Workshop, 8‒10 June 2011. First Edition. Hamburg, 209–214.
- SPHERIC – SPH European Research Interest Community (2017). http://spheric-sph.org/index (pridobljeno 2. 11. 2017).