Air temperature and precipitation analyses on a small Mediterranean island: the case of the remote island of Lastovo (Adriatic Sea, Croatia)
Analize temperatur zraka in padavin na majhnem sredozemskem otoku: primer oddaljenega otoka Lastovo (Jadransko morje, Hrvaška)
- Avtorji: Ognjen Bonacci
- Citat: Acta hydrotechnica, vol. 32, no. 57, pp. 135-150, 2019. https://doi.org/10.15292/acta.hydro.2019.10
- Povzetek: Članek podaja analizo časovnih vrst letnih, mesečnih in dnevnih temperatur zraka ter letnih in mesečnih padavin na meteorološki postaji Lastovo na otoku Lastovo (Hrvaška) v obdobju 1948–2018. Majhen kraški jadranski otok Lastovo je najbolj oddaljen poseljen otok v hrvaškem delu Jadranskega morja. Absolutne minimalne letne temperature zraka so med -6,8 ºC (zabeleženo leta 1963) in 4,0 ºC (leta 1974), s povprečno vrednostjo -1,2 ºC. Srednje letne temperature zraka so med 14,7 ºC (zabeleženo leta 1980) in 17,4 ºC (leta 2018), s povprečno vrednostjo 15,8 ºC. Absolutne maksimalne letne temperature zraka so med 31,7 ºC (zabeleženo leta 1959) in 38,3 ºC (leta 1998), s povprečno vrednostjo 34,8 ºC. Visok porast v minimalnih letnih temperaturah se je začel leta 1972. Temperaturni skok srednje letne temperature se je začel devet let pozneje, leta 1981, do velika porasta maksimalne letne temperature pa je prišlo leta 1992. Vrednosti t-testa za vse tri obravnavane letne temperaturne indekse podpirajo ugotovitev, da so povprečne vrednosti v dveh podobdobjih, opredeljenih z metodo umerjenih delnih vsot (RAPS), statistično značilne na ravni p<<0,01. Trend povečanja temperatur zraka je znatno višji za časovne vrste povprečnih maksimalnih temperatur Tmax kot za časovne vrste povprečnih minimalnih temperatur Tmin. Najizrazitejši trend naraščanja opažamo junija in julija. Število toplih in vročih dni na Lastovu se je v obravnavanem obdobju nenehno povečevalo. Naraščanje obeh indeksov je statistično značilno na ravni p<0,01. Z metodo DTD (angl. day-to-day) smo ugotovili zmanjšanje v nočni temperaturni variabilnosti in povečanje v dnevni temperaturni variabilnosti. Število dni zmrzali se vztrajno manjša. Srednja letna količina padavin v obdobju 1948–2018 je bila 666 mm, minimalna količina padavin je bila 368 mm in maksimalna 1089 mm. Za obdobje 1948–2018 nismo ugotovili trendov glede letnih in mesečnih padavin. Statistično neznačilen padec letnih padavin beležimo po letu 1982.
- Ključne besede: podnebne spremembe, sredozemski otok, temperaturne spremembe, Spearmanov koeficient korelacije rangov, dnevna temperaturna variabilnost, otok Lastovo, Hrvaška
- Polno besedilo: a32ob.pdf
- Viri:
- Adeloye, A. J., Montaseri M. (2002). Preliminary streamflow data analyses prior to water resources planning study. Hydrol Sci J 47(5), 679–692. https://doi.org/10.1080/02626660209492973.
- Blondel, J., Aronson, J., Bodiou, J. Y., Boeuf, G. (2010). The Mediterranean region: biological diversity in space and time. Oxford University Press, Oxford
- Bonacci, O. (2010). Analiza nizova srednjih godišnjih temperature zraka u Hrvatskoj. Građevinar 62(9), 781–791.
- Bonacci, O. (2012). Increase of mean annual surface air temperature in the Western Balkans during last 30 years. Vodoprivreda 44(255-257), 75–89.
- Bonacci, O., Roje-Bonacci, T. (2018). Analyses of the Zagreb-Grič Observatory air temperatures indices for the period 1881-2017. Acta Hydrotechnica 31(54), 67–85. https://doi.org/10.15292/acta.hydro.2018.05.
- Duplačić-Leder, T., Ujević, T., Čala, M. (2004). Coastline lengths and area of islands in the Croatian part of the Adriatic Sea determined from the topographic maps at the scale 1:25000. Geoadria 9(1), 5–32. https://doi.org/10.15291/geoadria.127.
- Filipčić, A., Orešić, D., Maradin, M. (2013). Changes in precipitation levels in Croatia from the mid 20th century to the present. Geoadria 18(1), 29–39. https://doi.org/10.15291/geoadria.145.
- Garbrecht, J., Fernandez, G. P. (1994). Visualization of trends and fluctuations in climatic records. Water Resources Bulletin 30(2), 297–306. https://doi.org/10.1111/j.1752-1688.1994.tb03292.x.
- Giorgi, F., Lionello, P. (2008). Climate change projections for the Mediterranean region. Glob Planet Change 63, 90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005.
- Gough, W. A. (2008). Theoretical considerations of day-to-day temperature variability applied to Toronto and Calgary, Canada data. Theoretical and Applied Climatology 94(1-2), 97–105. https://doi.org/10.1007/s00704-007-0346-9.
- Gough, W. A., Hu, Y. (2016). Day-to-day temperature variability for four urban areas in China. Urban Climate 17, 80–88. https://doi.org/10.1016/j.uclim.2016.06.002.
- Karl, T. R., Knight, R. W., Plummer, N. (1995). Trends in high-frequency climate variability in the twentieth century. Nature 377, 217–220. https://doi.org/10.1038/377217a0.
- Klausmeyer, K. R., Shaw, M. R. (2009). Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS ONE 4, e6392. https://doi.org/10.1371/journal.pone.0006392.
- Lal, M., Harasawa, H., Takahashi, K. (2002). Future climate change and its impacts over Small Island States. Clim Res 19,179–192.
- Lange, M., Donta, A. A. (2006). Climate change and vulnerability to drought on Mediterranean islands. In: Koundouri, P., Karousakis, K., Assimacopoulos, D., Jeffrey, P., Lange, M. (eds.) Water management in arid and semi-arid regions: interdisciplinary perspectives. Edward Elgar Publishing Ltd, Cheltenham.
- Le Houérou, H. N. (1990). Global change: vegetation, ecosystems, and land use in the southern Mediterranean basin by the mid twenty first century. Israel Journal of Botany, 39, 481–508. https://doi.org/10.1007/978-94-009-0701-0_19.
- Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., Chenoweth, J., El Maayar, M., Giannakopoulos, C., Hannides, C., Lange, M. A., Tanarthe, M., Tyrlis, E., Xoplaki, E. (2012). Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim Change 114, 667–687. https://doi.org/10.1007/s10584-012-0418-4.
- Levi, B. G. (2008). Trends in the hydrology of the western US bear the imprint of manmade climate change. Physics Today 61(4), 16–18. https://doi.org/10.1063/1.2911164.
- Li, S. F., Jiang, D. B., Lian, Y., Yao, Y. X. (2017). Trends in day-to-day variability of surface air temperature in China during 1961–2012. Atmospheric and Oceanic Science Letters 10(2), 122–129. https://doi.org/10.1080/16742834.2017.1258291.
- Lionello, P., Scarascia, L. (2018). The relation between climate change in the Mediterranean region and global warming. Regional Environmental Change, 18(5), 1481–1493. https://doi.org/10.1007/s10113-018-1290-1.
- McGhee, J. W. (1985). Introductory statistics. West Publishing Company, St Paul and New York.
- Médail, F. (2016). Plant biodiversity and vegetation on Mediterranean islands in the face of global change. In: Moatti, J. P., Thiébault, S. (eds.) (2016). The Mediterranean region under climate change. IRD Éditions, Marseille, pp. 363–376.
- Méheux, K., Dominey-Howes, D., Lloyd, K. (2007). Natural hazard impacts in small Island developing states: a review of current knowledge and future research needs. Natural Hazards 40(2), 429–446. https://doi.org/10.1007/s11069-006-9001-5.
- Moatti, J. P., Thiébault, S. (eds.) (2016). The Mediterranean region under climate change. IRD Éditions, Marseille. https://doi.org/10.4000/books.irdeditions.22908.
- Moberg, A., Jones, P. D., Barriendos, M., Bergstrom, H., Camuffo, D., Cocheo, C., Davies, T. D., Denarée, G. R., Martin-Vide, J., Maugeri, M., Rodriguez, R., Verhove, T. (2000). Day-to-day temperature variability trends in 160- to 275-year-long European instrumental records. Journal of Geographical Research Atmosphere 105(D18), 22849–22868. https://doi.org/10.1029/2000JD900300.
- Nurse, L. A., Sem, G., Hay, J. E., Suarez, A. G., Wong, P. P., Briguglio, L., Ragoonaden, S. (2001). Small island states. In: McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., White, K. S. (eds.), Climate change 2001: impacts, adaptation, and vulnerability. Cambridge: Cambridge University Press, pp. 843–875.
- Pausas, J. G., Fernández-Muñoz, S. (2012). Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110, 215–226. https://doi.org/10.1007/s10584-011-0060-6.
- Rebetez, M. (2001). Changes in daily and nightly day-to-day temperature variability during the twentieth century for two stations in Switzerland. Theoretical and Applied Climatology 69, 13–21. https://doi.org/10.1007/s007040170032.
- Tam, B. Y., Gough, W. A. (2012). Examining past temperature variability in Moosonee Thunder Bay, and Toronto, Ontario, Canada through a day-to-day variability framework. Theoretical and Applied Climatology 110(1-2), 103–113. https://doi.org/10.1007/s00704-012-0622-1.
- Tam, B. Y., Gough, W. A., Mohsin, T. (2015). The impact of urbanization and the urban heat island effect on day to day temperature variation. Urban Climate 12, 1–10. https://doi.org/10.1016/j.uclim.2014.12.004.
- Triantis, K., Mylonas, M. (2009). Greek islands, biology. In: Gillespie RG, Clague DA (eds), Encyclopedia of Islands. University of California Press, Berkeley and Los Angeles, pp. 388–392.
- Vogiatzakis, I. N., Mannion, A. M., Sarris, D. (2016). Mediterranean island biodiversity and climatechange: the last 10,000 years and the future. Biodiversity Conservation 25, 2597–2627. https://doi.org/10.1007/s10531-016-1204-9.
- Walshe, R. A., Stancioff, C. E. (2018). Small island perspectives on climate change. Island Studies Journal 13(1), 13-24. https://doi.org/10.24043/isj.56.
- Wall, G. (1996). The implications of climate change for tourism in small island states. In: Briguglio, L., Archer, B., Jafari, J., Wall, G. (eds) Sustainable Tourism in Islands and Small States: Issues and Policies. Pinter, London, United Kingdom, pp. 205–216.