Possibility of using waste edible oil for biogas production
Možnost uporabe odpadnega jedilnega olja za pridobivanje bioplina
- Avtorji: Sabina Kolbl Repinc
- Citat: Acta hydrotechnica, vol. 34, no. 61, pp. 139-156, 2021. https://doi.org/10.15292/acta.hydro.2021.10
- Povzetek: Anaerobna presnova je proces, s katerim lahko iz organsko razgradljivih odpadnih snovi ponovno pridobimo energijo v obliki bioplina. Nekontrolirano odlaganje biološko razgradljivih odpadkov je za okolje lahko zelo obremenjujoče. V Sloveniji letno proizvedemo večje količine odpadnega jedilnega olja, ki bi ga lahko izkoristili za proizvodnjo bioplina. V tej študiji smo izvedli meritve metanskega potenciala odpadnega jedilnega olja v šaržnem eksperimentu. V pilotnem semikontinuirnem eksperimentu smo ocenili primernost odpadnega jedilnega olja za uporabo v anaerobnih reaktorjih na čistilni napravi. Rezultati študije kažejo, da je količina jedilnega olja, ki ga dnevno lahko doziramo v anaerobne reaktorje, omejena, saj močno vpliva na stabilnost procesa anaerobne presnove in na proizvodnjo bioplina. Izkazalo se je, da je najbolj optimalna obremenitev anaerobnega reaktorja z jedilnim oljem znašala med 1,6 in 2,4 g OS/L inokuluma. Takrat je proces anaerobne presnove deloval stabilno, produkcija bioplina je bila največja. Pri večji obremenitvi je prišlo do velikih nihanj v sistemu, zmanjšanja pH, povečanja hlapnih maščobnih kislin, povišanih vrednosti KPK na iztoku iz reaktorja in bistveno zmanjšane proizvodnje bioplina.
- Ključne besede: odpadno jedilno olje, bioplin, anaerobna presnova, čistilna naprava, odvečno blato.
- Polno besedilo: a34skr2.pdf
- Viri:
- APHA (2005). Standard Methods for the Examination of Water and Wastewater. Edited by L. S. C. E.W. Rice, R.B. Baird, A.D. Eaton. Washington, USA: American Water Works Assn. Available at: https://www.amazon.com/Standard-Methods-Examination-Water-Wastewater/dp/0875530133.
- Awe, O. W., Lu, J., Wu, S., Zhao, Y., Nzihou, A., Lyczko, N., Minh, D. P. (2018). Effect of Oil Content on Biogas Production, Process Performance and Stability of Food Waste Anaerobic Digestion. Waste and Biomass Valorization 9(12), 2295–2306. https://doi.org/10.1007/s12649-017-0179-4.
- Batstone, D. J., Puyol, D., Flores-Alsina, X., Rodríguez, J. (2015). Mathematical modelling of anaerobic digestion processes: applications and future needs. Rev. Environ. Sci. Bio/Technology 14(4), 595–613. https://doi.org/10.1007/s11157-015-9376-4.
- Batstone, D. J., Tait, S., Starrenburg, D. (2009). Estimation of hydrolysis parameters in full-scale anerobic digesters. Biotechnol. Bioeng. 102(5), 1513–1520. https://doi.org/10.1002/bit.22163.
- Borja, R., Rincón, B., Raposo, F., Domínguez, J. R., Millán, F., Martín, A. (2004). Mesophilic anaerobic digestion in a fluidised-bed reactor of wastewater from the production of protein isolates from chickpea flour. Process Biochem. 39(12), 1913–1921. https://doi.org/10.1016/j.procbio.2003.09.022.
- Carnevale, E., Molari, G., Vittuari, M. (2017). Used Cooking Oils in the Biogas Chain: A Technical and Economic Assessment. https://doi.org/10.3390/en10020192.
- Deublein, D., Steinhauser, A. (2010). Biochemistry, in: Biogas from Waste and Renewable Resources. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 97–100. https://doi.org/10.1002/9783527632794.ch9.
- Fierro, J., Martínez, E. J., Morán, A., Gómez, X. (2014). Valorisation of used cooking oil sludge by codigestion with swine manure. Waste Manag. 34(8), 1537–1545. https://doi.org/10.1016/j.wasman.2014.02.006.
- Hammer, Ø., Harper, D. A. T. a. T., Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 4(1)(1), 1–9. https://doi.org/10.1016/j.bcp.2008.05.025.
- He, X., Zhang, Q., Cooney, M. J., Yan, T. (2015). Biodegradation of fat, oil and grease (FOG) deposits under various redox conditions relevant to sewer environment. Appl. Microbiol. Biotechnol. 99(14), 6059–6068. https://doi.org/10.1007/s00253-015-6457-9
- Huynh, L.-H., Kasim, N. S., Ju, Y.-H. (2011). Chapter 16 - Biodiesel Production from Waste Oils, in: Pandey, A., Larroche, C., Ricke, S. C., Dussap, C.-G., Gnansounou, E. B. T.-B. (Eds.), . Academic Press, Amsterdam, 375–396. https://doi.org/https://doi.org/10.1016/B978-0-12-385099-7.00017-6.
- Iskander, S. M., Amha, Y. M., Wang, P., Dong, Q., Liu, J., Corbett, M., Smith, A. L. (2021). Investigation of Fats, Oils, and Grease Co-digestion With Food Waste in Anaerobic Membrane Bioreactors and the Associated Microbial Community Using MinION Sequencing. Front. Bioeng. Biotechnol. 9, 613626. https://doi.org/10.3389/fbioe.2021.613626.
- Koch, K., Hafner, S. D., Weinrich, S., Astals, S. (2019). Identification of Critical Problems in Biochemical Methane Potential (BMP) Tests From Methane Production Curves. Front. Environ. Sci.
- Koch, K., Lippert, T., Drewes, J. E. (2017). The role of inoculum’s origin on the methane yield of different substrates in biochemical methane potential (BMP) tests. Bioresour. Technol. 243, 457–463. https://doi.org/10.1016/J.BIORTECH.2017.06.142.
- Kolbl Repinc, S., Šket, R., Zavec, D., Mikuš, K. V., Fermoso, F. G., Stres, B. (2018). Full-scale agricultural biogas plant metal content and process parameters in relation to bacterial and archaeal microbial communities over 2.5 year span. J. Environ. Manage. 213, 566–574. https://doi.org/10.1016/j.jenvman.2018.02.058
- Kolbl Repinc, S., Deutsch, L., Savić, D., Steinman, F., Danilović, B., Stres, B. (2021). The impact of crude glycerol from biodiesel production and its trace element content on biomethane production in a batch experiment: modelling as a step towards an impartial routine comparison of results. Acta Hydrotechnica (34/60), 11–24. https://doi.org/10.15292/acta.hydro.2021.02
- Kolbl, S., Paloczi, A., Panjan, J., Stres, B. (2014). Addressing case specific biogas plant tasks: Industry oriented methane yields derived from 5L Automatic Methane Potential Test Systems in batch or semi-continuous tests using realistic inocula, substrate particle sizes and organic loading. Bioresour. Technol. 153, 180–188. https://doi.org/10.1016/j.biortech.2013.12.010.
- Kolbl, S., Panjan, J., Stres, B. (2016). Mixture of primary and secondary municipal wastewater sludge as a short-term substrate in 2 MW agricultural biogas plant: site-specific sustainability of enzymatic and ultrasound pretreatments. J. Chem. Technol. Biotechnol. 91(11), 2769–2778. https://doi.org/10.1002/jctb.4883.
- Li, C., Champagne, P., Anderson, B. C. (2013). Biogas production performance of mesophilic and thermophilic anaerobic co-digestion with fat, oil, and grease in semi-continuous flow digesters: Effects of temperature, hydraulic retention time, and organic loading rate. Environ. Technol. (United Kingdom) 34(13–14), 2125–2133. https://doi.org/10.1080/09593330.2013.824010.
- Li, Y., Jin, Y., Borrion, A., Li, J. (2018). Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste. Waste Manag. 73, 156–164. https://doi.org/https://doi.org/10.1016/j.wasman.2017.12.027.
- Long, J. H., Aziz, T. N., Reyes, F. L. D. L., Ducoste, J. J. (2012). Anaerobic co-digestion of fat, oil, and grease (FOG): A review of gas production and process limitations. Process Saf. Environ. Prot. 90(3), 231–245. https://doi.org/10.1016/j.psep.2011.10.001.
- Marchetti, R., Vasmara, C., Bertin, L., Fiume, F. (2020). Conversion of waste cooking oil into biogas: perspectives and limits. Appl. Microbiol. Biotechnol. 104(7), 2833–2856. https://doi.org/10.1007/s00253-020-10431-3.
- Marchetti, R., Vasmara, C., Fiume, F. (2019). Pig slurry improves the anaerobic digestion of waste cooking oil. Appl. Microbiol. Biotechnol. 103(19), 8267–8279. https://doi.org/10.1007/s00253-019-10087-8.
- Meng, Y., Li, S., Yuan, H., Zou, D., Liu, Y., Zhu, B., Chufo, A., Jaffar, M., Li, X. (2015). Evaluating biomethane production from anaerobic mono- and co-digestion of food waste and floatable oil (FO) skimmed from food waste. Bioresour. Technol. 185, 7–13. https://doi.org/10.1016/j.biortech.2015.02.036.
- Murovec, B., Kolbl, S., Stres, B. (2015). Methane Yield Database: Online infrastructure and bioresource for methane yield data and related metadata. Bioresour. Technol. 189, 217–223. https://doi.org/10.1016/j.biortech.2015.04.021.
- Noutsopoulos, C., Mamais, D., Antoniou, K., Avramides, C., Oikonomopoulos, P., Fountoulakis, I. (2013). Anaerobic co-digestion of grease sludge and sewage sludge: The effect of organic loading and grease sludge content. Bioresour. Technol. 131, 452–459. https://doi.org/10.1016/j.biortech.2012.12.193.
- Silva, S. A., Salvador, A. F., Cavaleiro, A. J., Pereira, M. A., Stams, A. J. M., Alves, M. M., Sousa, D. Z. (2016). Toxicity of long chain fatty acids towards acetate conversion by Methanosaeta concilii and Methanosarcina mazei. Microb. Biotechnol. 9(4), 514–518. https://doi.org/10.1111/1751-7915.12365.
- Tandukar, M., Pavlostathis, S. G. (2015). Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints. Water Res. 87, 432–445. https://doi.org/https://doi.org/10.1016/j.watres.2015.04.031.
- Tchobanoglous, G. (2004). Wastewater engineering : treatment and reuse, McGraw-Hill series in civil and environmental engineering. New York ; London : McGraw-Hill, cop. 2004.
- Vu, H. T., Min, B. (2019). Enhanced methane fermentation of municipal sewage sludge by microbial electrochemical systems integrated with anaerobic digestion. Int. J. Hydrogen Energy 44(57), 30357–30366. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.09.163.
- Wan, C., Zhou, Q., Fu, G., Li, Y. (2011). Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease. Waste Manag. 31(8), 1752–1758. https://doi.org/10.1016/j.wasman.2011.03.025.
- Wang, X. L., Zhou, J. J., Sun, Y. Q., Xiu, Z. L. (2019). Bioconversion of raw glycerol from waste cooking-oil-based biodiesel production to 1,3-propanediol and lactate by a microbial consortium. Front. Bioeng. Biotechnol. 7(FEB), 14. https://doi.org/10.3389/FBIOE.2019.00014/BIBTEX.
- Yalcinkaya, S., Malina, J. F. (2015). Model development and evaluation of methane potential from anaerobic co-digestion of municipal wastewater sludge and un-dewatered grease trap waste. Waste Manag. 40, 53–62. https://doi.org/https://doi.org/10.1016/j.wasman.2015.03.013.
- Zhang, C., Su, H., Baeyens, J., Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2014.05.038.
- Zhang, W., Lang, Q., Fang, M., Li, X., Bah, H., Dong, H., Dong, R. (2017). Combined effect of crude fat content and initial substrate concentration on batch anaerobic digestion characteristics of food waste. Bioresour. Technol. 232, 304–312. https://doi.org/https://doi.org/10.1016/j.biortech.2017.02.039.
- SURS – Statistični urad Republike Slovenije. Dostopno na: https://pxweb.stat.si/sistat/sl/Podrocja/Index/99/okolje (pridobljeno 20. 6. 2021).
- https://www.stat.si/StatWeb/News/Index/9865 (pridobljeno 28. 12. 2021)
- SURS 2016. Statistični urad Republike Slovenije. Food Among waste. Dostopno na: https://www.stat.si/dokument/9206/FOOD_AMONG_WASTE_internet.pdf (pridobljeno 11. 1. 2021).
- SiStat 2021. Podatkovna baza Statističnega urada Republike Slovenija, https://pxweb.stat.si/SiStatData/pxweb/sl/Data/-/2706101S.px (pridobljeno 28. 12. 2021)