Stability of vertical breakwaters by applying the general rules of Eurocode 7
Stabilnost vertikalnih valobranov z upoštevanjem splošnih pravil Evrokoda 7
- Avtorji: Davor Kvočka, Dušan Žagar
- Citat: Acta hydrotechnica, vol. 35, no. 62, pp. 41-56, 2022. https://doi.org/10.15292/acta.hydro.2022.04
- Povzetek: Valobrani so hidrotehnični objekti, namenjeni varovanju obale in obalne infrastrukture, ki so nenehno izpostavljeni delovanju morja. Posledično so izpostavljeni različnim hidrodinamičnim obremenitvam, zato je pomembno, da pri njihovem projektiranju veliko pozornost namenimo njihovi stabilnosti. V tej študiji smo preverili razliko v koeficientu varnosti prevrnitve in zdrsa valobrana, če splošno uporabljeni pristop za izračun stabilnosti valobrana, podan v standardu BS 6349, posodobimo z delnimi varnostnimi faktorji, podanimi v Evrokodu 7. V sklopu primerjalne analize smo uporabili tri različne metode za izračun hidrodinamičnih obremenitev, tj. metodo Sainflou, razširjeno metodo Goda brez možnosti prelivanja valobrana in razširjeno metodo Goda z upoštevanjem prelivanja valobrana. Stabilnost valobrana smo izračunali in primerjali za različne širine valobrana, pri čemer smo v vseh računskih primerih upoštevali konstantne parametre valovanja. Pri izračunu stabilnosti smo se omejili na preverjanje kontrole toge prevrnitve in zdrsa. Dobljeni rezultati kažejo, da ni bistvene razlike v izračunanem koeficientu stabilnosti valobrana med uporabljenima računskima postopkoma, ne glede na izbrano metodo za izračun hidrodinamičnih obremenitev. Za razvoj celovitega pristopa k izračunu stabilnosti valobrana z upoštevanjem Evrokodov bi bilo treba določiti še ključne procese in numerične modele za izračun stabilnosti temeljnih tal ter bolj natančno upoštevati vplive, povezane z obliko in principom gradnje valobrana, gradbenimi materiali in lokalnimi značilnostmi morskega dna.
- Ključne besede: Obalno inženirstvo, valobran, hidrodinamične obremenitve, stabilnost, Evrokod 7, standard BS 6349.
- Polno besedilo: a35dk.pdf
- Viri:
- Akbari, H., Torabbeigi, M. (2021). SPH modeling of wave interaction with reshaped and non-reshaped berm breakwaters with permeable layers. Applied Ocean Research, 112, 102714. https://doi.org/10.1016/j.apor.2021.102714.
- Allsop, W., Vicinanza, D., McKenna, J. (1996). Wave forces on vertical and composite breakwaters. Report SR 443. Wallingford, United Kingdom: HR Wallingford. Pridobljeno: 30. 7. 2021, from: https://eprints.hrwallingford.com/1/1/SR443-Waves-forces-vertical-composite-breakwaters-HRWallingford.pdf.
- BS 6349-7:1991. British Standard Code of practice for Maritime structures, Part 7. Guide to the design and construction of breakwaters. London, UK: British Standards Institution.
- Chakrabarti, S. K. (1999). Wave interaction with an upright breakwater structure. Ocean Engineering, 26(10), 1003–1021. https://doi.org/10.1016/S0029-8018(98)00028-6.
- CIRIA, CUR, CETMEF. (2007). The Rock Manual. The use of rock in hydraulic engineering (2nd edition). London: C683, CIRIA. Pridobljeno: 2. 9. 2021, from: https://www.ciria.org/ItemDetail?iProductCode=C683&Category=BOOK&WebsiteKey=3f18c87a-d62b-4eca-8ef4-9b09309c1c91.
- Cuomo, G., Allsop, W., Bruce, T., Pearson, J. (2010a). Breaking wave loads at vertical seawalls and breakwaters. Coastal Engineering, 57(4), 424–439. https://doi.org/10.1016/j.coastaleng.2009.11.005.
- Cuomo, G., Allsop, W., Takahashi, S. (2010b). Scaling wave impact pressures on vertical walls. Coastal Engineering, 57(6), 604–609. https://doi.org/10.1016/j.coastaleng.2010.01.004.
- Di Lauro, E., Maza, M., Lara, J. L., Losada, I. J., Contestabile, P., Vicinanza, D. (2020). Advantages of an innovative vertical breakwater with an overtopping wave energy converter. Coastal Engineering, 159, 103713. https://doi.org/10.1016/j.coastaleng.2020.103713.
- Ghalandarzadeh, A., Ghalandarzadeh, S., Abdi, F. (2021). Experimental study on the seismic deformations of rockfill breakwaters. Soil Dynamics and Earthquake Engineering, 147, 106760. https://doi.org/10.1016/j.soildyn.2021.106760.
- Goda, Y. (1967). The Fourth Order Approximation to the Pressure of Standing Waves. Coastal Engineering in Japan, 10(1), 1–11. https://doi.org/10.1080/05785634.1967.11924051.
- Goda, Y. (1974). New wave pressure formulae for composite breakwaters. Coastal Engineering Proceedings, 1(14). https://doi.org/10.9753/icce.v14.100.
- Guanche, R., Losada, I. J., Lara, J. L. (2009). Numerical analysis of wave loads for coastal structure stability. Coastal Engineering, 56(5), 543–558. https://doi.org/10.1016/j.coastaleng.2008.11.003.
- Guanche, Y., Camus, P., Guanche, R., Mendez, F. J., Medina, R. (2013). A simplified method to downscale wave dynamics on vertical breakwaters. Coastal Engineering, 71, 68–77. https://doi.org/10.1016/j.coastaleng.2012.08.001.
- Han, X., Dong, S., Wang, Y. (2021). Interaction between oblique waves and arc-shaped breakwater: Wave action on the breakwater and wave transformation behind it. Ocean Engineering, 234, 109252. https://doi.org/10.1016/j.oceaneng.2021.109252.
- Hiroi, I. (1920). The force and power of waves. The Engineer, 130, 184–185.
- Jianhong, Y., Dongsheng, J., Liu, P. L. F., Chan, A. H. C., Ren, W., Changqi, Z. (2014). Breaking wave-induced response of composite breakwater and liquefaction in seabed foundation. Coastal Engineering, 85, 72–86. https://doi.org/10.1016/j.coastaleng.2013.08.003.
- Kuo, Y.-S., Lin, C.-S., Chung, C.-Y., Wang, Y.-K. (2015). Wave loading distribution of oscillating water column caisson breakwaters under non-breaking wave forces. Journal of Marine Science and Technology, 23(1), 10. https://doi.org/10.6119/JMST-014-0114-1 .
- Minikin, R. C. R. (1963). Winds, waves, and maritime structures: Studies in harbour making and in the protection of coasts, 2nd edition (2nd Edition ed.). London, United Kingdom: Griffin.
- Mlekuž, J. (2017). Določanje stabilnosti valobrana po metodi Sainflou. (Diplomsko delo), Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo (samozaložba J. Mlekuž): 57 str.
- Morgan Young, D., Testik, F. Y. (2011). Wave reflection by submerged vertical and semicircular breakwaters. Ocean Engineering, 38(10), 1269–1276. https://doi.org/10.1016/j.oceaneng.2011.05.003.
- Najma, A., Ghalandarzadeh, A. (2019). Experimental study on the seismic behavior of composite breakwaters located on liquefiable seabed. Ocean Engineering, 186, 106127.https://doi.org/10.1016/j.oceaneng.2019.106127.
- NIB. (2022). Oceanografski podatki in meritve - Oceanografska boja - Ekstremne vrednosti. Pridobljeno: 28. 10. 2022, from: https://www.nib.si/mbp/sl/oceanografski-podatki/buoy-2/extreme-values-2.
- Pršić, M. (2008). Vodnogospodarske građevine. Tehničko Veleučilište Zagreb. Pridobljeno: 16. 8. 2021, from: http://www.grad.hr/nastava/hidrotehnika/tvz/vgg/skripta_pom_grad.pdf.
- Pršić, M. (2011). Plovni putevi i luke. Tehničko Veleučilište Zagreb. Pridobljeno: 16. 8. 2022, from: https://dokumen.tips/documents/plovni-putevi-i-luke-autor-marko-prsic.html?page=1.
- Radfar, S., Shafieefar, M., Akbari, H., Galiatsatou, P. A., Mazyak, A. R. (2021). Design of a rubble mound breakwater under the combined effect of wave heights and water levels, under present and future climate conditions. Applied Ocean Research, 112, 102711. https://doi.org/10.1016/j.apor.2021.102711.
- Sainflou, G. (1928). Essai sur les digues maritimes verticales. Annales de ponts et chaussèes, 98(II), 5–48 (in French).
- Stevenson, T. (2011). The Design and Construction of Harbours: A Treatise on Maritime Engineering. Cambridge: Cambridge University Press.
- Takahashi, H. (2021). Stability of composite-type breakwaters reinforced by rubble embankment. Soils and Foundations, 61(2), 318–334. https://doi.org/10.1016/j.sandf.2020.10.011.
- Takahashi, S. (1997). Breakwater Design. In G. P. Tsinker (Ed.), Handbook of Port and Harbor Engineering: Geotechnical and Structural Aspects (951–1043). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4757-0863-9_10.
- Takahashi, S., Tanimoto, K., Shimosako, K. (1994). A Proposal of Impulsive Pressure Coefficient for Design of Composite Breakwaters. Paper presented at the International Conference on Hydro-Technical Engineering for Port and Harbor Construction, Yokosuka, Japan.
- Thiruvenkatasamy, K., Neelamani, S., Sato, M. (2005). Nonbreaking Wave Forces on Multiresonant Oscillating Water Column Wave Power Caisson Breakwater. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(2), 77–84. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:2(77).
- Wang, X.-y., Liu, Y., Lu, L. (2021). Numerical study of water waves interacting with open comb-type caisson breakwaters. Ocean Engineering, 235, 109342. https://doi.org/10.1016/j.oceaneng.2021.109342.
- Zhang, Y., Ye, J. (2021). Physical modelling of the stability of a revetment breakwater built on reclaimed coral calcareous sand foundation in the South China sea—random waves and dense foundation. Ocean Engineering, 219, 108384. https://doi.org/10.1016/j.oceaneng.2020.108384.