Grey Water Footprint of Contaminants of Emerging Concern from Wasterwater in Sava River Basin
Sivi vodni odtis novodobnih onesnaževal iz odpadnih vod v porečju Save
- Avtorji: Libor Ansorge, Lada Stejskalová, Přemysl Soldán
- Citat: Acta hydrotechnica, vol. 35, no. 63, pp. 117-128, 2022. https://doi.org/10.15292/acta.hydro.2022.09
- Povzetek: Prisotnost novodobnih onesnaževal (NO) v vodi povzroča tveganje za okolje in zdravje ljudi. Onesnaženost vode z NO v porečju reke Save smo ocenjevali na podlagi dveh vzorčenj v okviru monitoringa, izvedenega maja in julija 2017. Sivi vodni odtis pretvori onesnaženost s posameznimi snovmi v količino vode, ki je potrebna za njihovo razredčenje, na neškodljivo raven. Zato lahko služi kot kazalnik za primerjavo različnih onesnaževal. Rezultati meritev kažejo, da se snovi, ki določajo sivi vodni odtis, razlikujejo od lokacije do lokacije. Najvišja vrednost sivega vodnega odtisa je bila povezana s snovjo 17β-estradiol, ki pa je bila ugotovljena le v enem vzorcu odpadne vode. Študija je pokazala, da se vrednosti sivega vodnega odtisa zelo razlikujejo od lokacije do lokacije in niso odvisne od velikosti čistilnih naprav. Za izbrane čistilne naprave je bila izvedena ocena trajnostnosti z uporabo kazalnika stopnje onesnaženosti vode. Vrednosti so bile v vseh primerih pod ravnjo 1,0, ki pomeni trajnostni izpust onesnaženja, v dveh primerih pa sta vrednosti že spadali v območje negotovosti. Študija prispeva k prejšnjim študijam o sivem vodnem odtisu in povečuje znanje o sivem vodnem odtisu pri tej vrsti onesnaženja.
- Ključne besede: Novodobna onesnaževala, sivi vodni odtis, mikroonesnaževala, reka Sava, čistilna naprava.
- Polno besedilo: a35la.pdf
- Viri:
- Ansorge, L., Stejskalová, L. (2023). Citation accuracy: a case study on definition of the grey water footprint. Publications 11(1), 8. https://doi.org/10.3390/publications11010008.
- Ansorge, L., Stejskalová, L., Dlabal, J. (2021). Šedá vodní stopa znečištění vypouštěného z čistíren odpadních vod v ČR evidovaných ve vodní bilanci v období 2002–2018 – datová sada. Vodohospodářské technicko-ekonomické informace 63(4), 38–43. https://doi.org/10.46555/VTEI.2021.05.003.
- Ansorge, L., Stejskalová, L., Dlabal, J. (2020a). Grey water footprint of point sources of pollution: the Czech Republic study. Journal of Urban and Environmental Engineering 14(1), 144–149. https://doi.org/10.4090/juee.2020.v14n1.144149.
- Ansorge, L., Stejskalová, L., Dlabal, J. (2020b). Effect of WWTP size on grey water footprint - Czech Republic case study. Environ. Res. Lett. 15(10), 104020. https://doi.org/10.1088/1748-9326/aba6ae.
- Ansorge, L., Stejskalová, L., Dlabal, J., Kučera, J. (2019). Šedá vodní stopa jako ukazatel udržitelného vypouštění odpadních vod – případová studie Povodí Ohře. Entecho 2(2), 12–18. https://doi.org/10.35933/ENTECHO.2019.12.001.
- Ansorge, L., Stejskalová, L., Vološinová, D., Dlabal, J. (2022). Limitation of Water Footprint Sustainability Assessment: A Review. European Journal of Sustainable Development 11(2), 1–1. https://doi.org/10.14207/ejsd.2022.v11n2p1.
- Astuti, M. P., Notodarmojo, S., Priadi, C. R., Padhye, L. P. (2023). Contaminants of emerging concerns (CECs) in a municipal wastewater treatment plant in Indonesia. Environ Sci Pollut Res 30(8), 21512–21532. https://doi.org/10.1007/s11356-022-23567-8.
- Balakrishna, K., Praveenkumarreddy, Y., Nishitha, D., Gopal, C. M., Shenoy, J. K., Bhat, K., Khare, N., Dhangar, K., Kumar, M. (2023). Occurrences of UV filters, endocrine disruptive chemicals, alkyl phenolic compounds, fragrances, and hormones in the wastewater and coastal waters of the Antarctica. Environmental Research 222, 115327. https://doi.org/10.1016/j.envres.2023.115327.
- Castellano-Hinojosa, A., Gallardo-Altamirano, M. J., González-López, J., González-Martínez, A. (2023). Anticancer drugs in wastewater and natural environments: A review on their occurrence, environmental persistence, treatment, and ecological risks. Journal of Hazardous Materials 447, 130818. https://doi.org/10.1016/j.jhazmat.2023.130818.
- Česen, M., Ahel, M., Terzić, S., Heath, D. J., Heath, E. (2019). The occurrence of contaminants of emerging concern in Slovenian and Croatian wastewaters and receiving Sava river. Science of The Total Environment 650, 2446–2453. https://doi.org/10.1016/j.scitotenv.2018.09.238.
- Česen, M., Heath, D., Krivec, M., Košmrlj, J., Kosjek, T., Heath, E. (2018). Seasonal and spatial variations in the occurrence, mass loadings and removal of compounds of emerging concern in the Slovene aqueous environment and environmental risk assessment. Environmental Pollution 242, 143–154. https://doi.org/10.1016/j.envpol.2018.06.052.
- Coors, A., Vollmar, P., Sacher, F., Polleichtner, C., Hassold, E., Gildemeister, D., Kühnen, U. (2018). Prospective environmental risk assessment of mixtures in wastewater treatment plant effluents – Theoretical considerations and experimental verification. Water Research 140, 56–66. https://doi.org/10.1016/j.watres.2018.04.031.
- Dulio, V., Koschorreck, J., van Bavel, B., van den Brink, P., Hollender, J., Munthe, J., Schlabach, M., Aalizadeh, R., Agerstrand, M., Ahrens, L., Allan, I., Alygizakis, N., Barcelo’, D., Bohlin-Nizzetto, P., Boutroup, S., Brack, W., Bressy, A., Christensen, J. H., Cirka, L., Covaci, A., Derksen, A., Deviller, G., Dingemans, M. M. L., Engwall, M., Fatta-Kassinos, D., Gago-Ferrero, P., Hernández, F., Herzke, D., Hilscherová, K., Hollert, H., Junghans, M., Kasprzyk-Hordern, B., Keiter, S., Kools, S. A. E., Kruve, A., Lambropoulou, D., Lamoree, M., Leonards, P., Lopez, B., López de Alda, M., Lundy, L., Makovinská, J., Marigómez, I., Martin, J. W., McHugh, B., Miège, C., O’Toole, S., Perkola, N., Polesello, S., Posthuma, L., Rodriguez-Mozaz, S., Roessink, I., Rostkowski, P., Ruedel, H., Samanipour, S., Schulze, T., Schymanski, E. L., Sengl, M., Tarábek, P., Ten Hulscher, D., Thomaidis, N., Togola, A., Valsecchi, S., van Leeuwen, S., von der Ohe, P., Vorkamp, K., Vrana, B., Slobodnik, J. (2020). The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let’s cooperate! Environmental Sciences Europe 32(1), 100. https://doi.org/10.1186/s12302-020-00375-w.
- Ene, S.-A., Teodosiu, C. (2011). Grey water footprint assessment of the wastewater treatment plants in the Prut-Bârlad catchment. Buletinul Institutului Politehnic din Iaşi. Chimie şi inginerie chimică LVII (LXI)(2), 127–143.
- Fuksa, J., Smetanová, L. (2022). The influence of Prague on water quality in the Vltava and the Czech Elbe. Vodohospodářské technicko-ekonomické informace 64(3), 4–14. https://doi.org/10.46555/VTEI.2022.03.002.
- Ginebreda, A., Kuzmanovic, M., Guasch, H., de Alda, M. L., López-Doval, J. C., Muñoz, I., Ricart, M., Romaní, A. M., Sabater, S., Barceló, D. (2014). Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: Compound prioritization, mixture characterization and relationships with biological descriptors. Science of The Total Environment 468–469, 715–723. https://doi.org/10.1016/j.scitotenv.2013.08.086.
- Gómez-Llanos, E., Durán-Barroso, P., Matías-Sánchez, A. (2018). Management effectiveness assessment in wastewater treatment plants through a new water footprint indicator. Journal of Cleaner Production 198, 463–471. https://doi.org/10.1016/j.jclepro.2018.07.062.
- Gómez-Llanos, E., Matías-Sánchez, A., Durán-Barroso, P. (2020). Wastewater treatment plant assessment by quantifying the carbon and water footprint. Water 12(11), 3204. https://doi.org/10.3390/w12113204.
- Gu, Y., Dong, Y., Wang, H., Keller, A., Xu, J., Chiramba, T., Li, F. (2016). Quantification of the water, energy and carbon footprints of wastewater treatment plants in China considering a water–energy nexus perspective. Ecological Indicators 60, 402–409. https://doi.org/10.1016/j.ecolind.2015.07.012.
- Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., Mekonnen, M. M. (2011). The water footprint assessment manual: Setting the global standard. Earthscan, London ; Washington, DC.
- Hoekstra, A. Y., Hung, P. Q. (2002). Virtual water trade - A quantification of virtual water flows between nations in relation to international crop trade (No. 12), Value of Water Research Report Series. UNESCO-IHE Institute for Water Education, Delft, The Netherlands.
- Hrkal, Z., Adomat, Y., Rozman, D., Grischek, T. (2023). Efficiency of micropollutant removal through artificial recharge and riverbank filtration: case studies of Káraný, Czech Republic and Dresden-Hosterwitz, Germany. Environ Earth Sci 82(6), 155. https://doi.org/10.1007/s12665-023-10785-7.
- Johnson, M. B., Mehrvar, M. (2019). An assessment of the grey water footprint of winery wastewater in the Niagara Region of Ontario, Canada. Journal of Cleaner Production 214, 623–632. https://doi.org/10.1016/j.jclepro.2018.12.311.
- Kalya, E., Alver, A. (2022). Determining the contribution of the wastewater treatment plant to the sustainable environment with water footprint indicators. Environ Dev Sustain. https://doi.org/10.1007/s10668-022-02600-3.
- Lapworth, D. J., Baran, N., Stuart, M. E., Ward, R. S. (2012). Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environmental Pollution 163, 287–303. https://doi.org/10.1016/j.envpol.2011.12.034.
- Li, H., Liu, G., Yang, Z., Hao, Y. (2016). Urban gray water footprint analysis based on input-output approach. Energy Procedia, Clean Energy for Clean City: CUE 2016--Applied Energy Symposium and Forum: Low-Carbon Cities and Urban Energy Systems 104, 118–122. https://doi.org/10.1016/j.egypro.2016.12.021.
- Martínez-Alcalá, I., Pellicer-Martínez, F., Fernández-López, C. (2018). Pharmaceutical grey water footprint: Accounting, influence of wastewater treatment plants and implications of the reuse. Water Research 135, 278–287. https://doi.org/10.1016/j.watres.2018.02.033.
- Mhuka, V., Dube, S., Nindi, M. M. (2020). Occurrence of pharmaceutical and personal care products (PPCPs) in wastewater and receiving waters in South Africa using LC-OrbitrapTM MS. Emerging Contaminants 6, 250–258. https://doi.org/10.1016/j.emcon.2020.07.002.
- Morera, S., Corominas, Ll., Poch, M., Aldaya, M. M., Comas, J. (2016). Water footprint assessment in wastewater treatment plants. Journal of Cleaner Production 112, 4741–4748. https://doi.org/10.1016/j.jclepro.2015.05.102.
- Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C. U., Mohan, D. (2019). Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 119(6), 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299.
- Praveenkumarreddy, Y., Vimalkumar, K., Ramaswamy, B. R., Kumar, V., Singhal, R. K., Basu, H., Gopal, C. M., Vandana, K. E., Bhat, K., Udayashankar, H. N., Balakrishna, K. (2021). Assessment of non-steroidal anti-inflammatory drugs from selected wastewater treatment plants of Southwestern India. Emerging Contaminants 7, 43–51. https://doi.org/10.1016/j.emcon.2021.01.001.
- Qin, X., Sun, C., Han, Q., Zou, W. (2019). Grey water footprint assessment from the perspective of water pollution sources: a case study of China. Water Resour 46(3), 454–465. https://doi.org/10.1134/S0097807819030187.
- Rapp-Wright, H., Regan, F., White, B., Barron, L. P. (2023). A year-long study of the occurrence and risk of over 140 contaminants of emerging concern in wastewater influent, effluent and receiving waters in the Republic of Ireland. Science of The Total Environment 860, 160379. https://doi.org/10.1016/j.scitotenv.2022.160379.
- Rezaee, M., Tabesh, M. (2022). Effects of inflow, infiltration, and exfiltration on water footprint increase of a sewer system: A case study of Tehran. Sustainable Cities and Society 79, 103707. https://doi.org/10.1016/j.scs.2022.103707.
- Saidulu, D., Gupta, B., Gupta, A. K., Ghosal, P. S. (2021). A review on occurrences, eco-toxic effects, and remediation of emerging contaminants from wastewater: Special emphasis on biological treatment based hybrid systems. Journal of Environmental Chemical Engineering 9(4), 105282. https://doi.org/10.1016/j.jece.2021.105282.
- Samal, K., Bandyopadhyay, R., Dash, R. R. (2022). Biological treatment of contaminants of emerging concern in wastewater: a review. Journal of Hazardous, Toxic, and Radioactive Waste 26(2), 04022002. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000685.
- Sauvé, S., Desrosiers, M. (2014). A review of what is an emerging contaminant. Chemistry Central Journal 8(1), 15. https://doi.org/10.1186/1752-153X-8-15.
- Stejskalová, L., Ansorge, L., Rosendorf, P., Fiala, D., Chernysh, Y., Kólová, A. (2022). Šedá vodní stopa komunálního znečištění se zaměřením na antibiotika – od přítokových vod na ČOV po stav v recipientu, in: Zborník Prednášok a Posterov 12. Bienálnej Konferencie s Medzinárodnou Účasťou ODPADOVÉ VODY 2022. Presented at the 12. bienálna konferencia s medzinárodnou účasťou ODPADOVÉ VODY 2022, Asociácia čistiarenských expertov SR, Bratislava, 400–405.
- Teodosiu, C., Barjoveanu, G., Sluser, B. R., Popa, S. A. E., Trofin, O. (2016). Environmental assessment of municipal wastewater discharges: a comparative study of evaluation methods. Int J Life Cycle Assess 21(3), 395–411. https://doi.org/10.1007/s11367-016-1029-5.
- Wilkinson, J. L., Boxall, A. B. A., Kolpin, D. W., Leung, K. M. Y., Lai, R. W. S., Galbán-Malagón, C., Adell, A. D., Mondon, J., Metian, M., Marchant, R. A., Bouzas-Monroy, A., Cuni-Sanchez, A., Coors, A., Carriquiriborde, P., Rojo, M., Gordon, C., Cara, M., Moermond, M., Luarte, T., Petrosyan, V., Perikhanyan, Y., Mahon, C. S., McGurk, C. J., Hofmann, T., Kormoker, T., Iniguez, V., Guzman-Otazo, J., Tavares, J. L., Gildasio De Figueiredo, F., Razzolini, M. T. P., Dougnon, V., Gbaguidi, G., Traoré, O., Blais, J. M., Kimpe, L. E., Wong, M., Wong, D., Ntchantcho, R., Pizarro, J., Ying, G.-G., Chen, C.-E., Páez, M., Martínez-Lara, J., Otamonga, J.-P., Poté, J., Ifo, S. A., Wilson, P., Echeverría-Sáenz, S., Udikovic-Kolic, N., Milakovic, M., Fatta-Kassinos, D., Ioannou-Ttofa, L., Belušová, V., Vymazal, J., Cárdenas-Bustamante, M., Kassa, B. A., Garric, J., Chaumot, A., Gibba, P., Kunchulia, I., Seidensticker, S., Lyberatos, G., Halldórsson, H. P., Melling, M., Shashidhar, T., Lamba, M., Nastiti, A., Supriatin, A., Pourang, N., Abedini, A., Abdullah, O., Gharbia, S. S., Pilla, F., Chefetz, B., Topaz, T., Yao, K. M., Aubakirova, B., Beisenova, R., Olaka, L., Mulu, J. K., Chatanga, P., Ntuli, V., Blama, N. T., Sherif, S., Aris, A. Z., Looi, L. J., Niang, M., Traore, S. T., Oldenkamp, R., Ogunbanwo, O., Ashfaq, M., Iqbal, M., Abdeen, Z., O’Dea, A., Morales-Saldaña, J. M., Custodio, M., de la Cruz, H., Navarrete, I., Carvalho, F., Gogra, A. B., Koroma, B. M., Cerkvenik-Flajs, V., Gombač, M., Thwala, M., Choi, K., Kang, H., Ladu, J. L. C., Rico, A., Amerasinghe, P., Sobek, A., Horlitz, G., Zenker, A. K., King, A. C., Jiang, J.-J., Kariuki, R., Tumbo, M., Tezel, U., Onay, T. T., Lejju, J. B., Vystavna, Y., Vergeles, Y., Heinzen, H., Pérez-Parada, A., Sims, D. B., Figy, M., Good, D., Teta, C. (2022). Pharmaceutical pollution of the world’s rivers. Proc Natl Acad Sci USA 119(8), e2113947119. https://doi.org/10.1073/pnas.2113947119.
- Wöhler, L., Brouwer, P., Augustijn, D. C. M., Hoekstra, A. Y., Hogeboom, R. J., Irvine, B., Lämmchen, V., Niebaum, G., Krol, M. S. (2021). An integrated modelling approach to derive the grey water footprint of veterinary antibiotics. Environmental Pollution 288, 117746. https://doi.org/10.1016/j.envpol.2021.117746.
- Wöhler, L., Niebaum, G., Krol, M., Hoekstra, A. Y. (2020). The grey water footprint of human and veterinary pharmaceuticals. Water Research X 7, 100044. https://doi.org/10.1016/j.wroa.2020.100044.
- Yapıcıoğlu, P. (2020). Grey water footprint assessment for a dye industry wastewater treatment plant using Monte Carlo simulation: influence of reuse on minimisation of the GWF. IJGW 21(2), 199. https://doi.org/10.1504/IJGW.2020.108180.