Spatial Statistics Analysis of Precipitation in the Urmia Lake Basin
Prostorska statistična analiza padavin v porečju jezera Urmia
- Avtorji: Hossein Aghamohammadi, Saeed Behzadi, Fatemeh Moshtaghinejad
- Citat: Acta hydrotechnica, vol. 36, no. 65, pp. 139-154, 2023. https://doi.org/10.15292/acta.hydro.2023.09
- Povzetek: Večina svetovnega prebivalstva živi na območjih, ki se soočajo s hudo krizo zaradi pomanjkanja vode. Klimatologi za spopadanje s temi izzivi potrebujejo informacije o padavinah, analize prostorskih vzorcev in modele prostorskih odnosov. V prispevku opisujemo celoviti pristop k opisovanju geografskega pojava z uporabo različnih geostatističnih tehnik. Uporabljeni sta dve glavni metodi interpolacije (metoda inverzne utežene razdalje in Kriging) ter primerjani njuni rezultati. Kot območje študije primera je bilo izbrano porečje jezera Urmia, ki se je v zadnjih letih soočalo s kritičnimi razmerami. Padavine smo najprej modelirali s klasičnimi in geostatističnimi metodami. Rezultati kažejo, da je navadni Kriging najboljša interpolacijska metoda za padavine – z vrednostjo RMS 4,15, metoda z eksponentno jedrno funkcijo pa je najslabša – z vrednostjo RMS 5,02. Na koncu je bila izvedena splošna regresijska analiza padavin. Rezultati kažejo, da je bila spremenljivka širine najvplivnejša odvisna spremenljivka s faktorjem vpliva 81 %, naklon pa ima najmanjši vpliv na padavine s skoraj nič odstotki. Zdi se, da je vpliv zemljepisne širine lokalne narave in morda ne predstavlja pomembne globalne okoljske grožnje.
- Ključne besede: Ocena padavin, geostatistika, modeliranje prostorskih odnosov, krigiranje.
- Polno besedilo: a36ha.pdf
- Viri:
- Abdollahi, A., Behzadi, S. (2022). Socio-Economic and Demographic Factors Associated with the Spatial Distribution of COVID-19 in Africa. Journal of Racial and Ethnic Health Disparities: 1-13.
- Abo-Monasar, A., Al-Zahrani, M. (2014). Estimation of rainfall distribution for the southwestern region of Saudi Arabia. Hydrological Sciences Journal, 59(2): 420-431. https://doi.org/10.1080/02626667.2013.872788.
- Bajat, B. et al. (2013). Mapping average annual precipitation in Serbia (1961–1990) by using regression kriging. Theoretical and applied climatology, 112(1-2): 1-13. https://doi.org/10.1007/s00704-012-0702-2.
- Baykal, T.M., Colak, H.E., Kılınc, C. (2022). Forecasting future climate boundary maps (2021–2060) using exponential smoothing method and GIS. Science of the Total Environment, 848: 157633. https://doi.org/10.1016/j.scitotenv.2022.157633.
- Behzadi, S., Alesheikh, A.A. (2013). Introducing a novel model of belief–desire–intention agent for urban land use planning. Engineering Applications of Artificial Intelligence, 26(9): 2028-2044. https://doi.org/10.1016/j.engappai.2013.06.015.
- Behzadi, S., Ali Alesheikh, A. (2013). Introducing AN Agent-Based Object Recognition Operator for Proximity Analysis. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (3): 91-95. https://doi.org/10.5194/isprsarchives-XL-1-W3-91-2013.
- Behzadi, S., Jalilzadeh, A. (2020). Introducing a Novel Digital Elevation Model Using Artificial Neural Network Algorithm. Civil Engineering Dimension, 22(2): 47-51. https://doi.org/10.9744/ced.22.2.47-51.
- Behzadi, S., Mousavi, Z. (2019). A novel agent-based model for forest fire prediction. Earth Observation and Geomatics Engineering, 3(2): 51-63. https://doi.org/10.22059/eoge.2020.283932.1051.
- Benoit, L., Mariethoz, G. (2017). Generating synthetic rainfall with geostatistical simulations. Wiley Interdisciplinary Reviews: Water, 4(2): e1199. https://doi.org/10.1002/wat2.1199.
- Bostan, P., Heuvelink, G.B., Akyurek, S. (2012). Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. International Journal of Applied Earth Observation and Geoinformation, 19: 115-126. https://doi.org/10.1016/j.jag.2012.04.010.
- Cheng, K.S., Lin, Y.C., Liou, J.J. (2008). Rain‐gauge network evaluation and augmentation using geostatistics. Hydrological Processes, 22(14): 2554-2564. https://doi.org/10.1002/hyp.6851.
- Cristiano, E., ten Veldhuis, M.-c., Van De Giesen, N. (2017). Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas–a review. Hydrology and Earth System Sciences, 21(7): 3859-3878. https://doi.org/10.5194/hess-21-3859-2017.
- Eivazi, M., Mosaedi, A. (2012). An Investigation on Spatial Pattern of Annual Precipitation in Golestan Province by Using Deterministic and Geostatistics Models.
- Fernández-Delgado, M. et al. (2019). An extensive experimental survey of regression methods. Neural Networks, 111: 11-34. https://doi.org/10.1016/j.neunet.2018.12.010.
- Ghashghaie, S., Behzadi, S. (2019.) Spatial Statistics Analysis to Identify Hot Spots Using Accidental Event Calls Services. Journal of Statistical Research of Iran JSRI, 16(1): 121-141.
- Huang, F.L. (2018). Multilevel modeling and ordinary least squares regression: how comparable are they? The Journal of Experimental Education, 86(2): 265-281. https://doi.org/10.1080/00220973.2016.1277339.
- Jafarian, H., Behzadi, S. (2020). Evaluation of PM2. 5 emissions in Tehran by means of remote sensing and regression models. Pollution, 6(3): 521-529.
- Jalilzadeh, A., Behzadi, S. (2019). Machine learning method for predicting the depth of shallow lakes using multi-band remote sensing images. Journal of Soft Computing in Civil Engineering, 3(2): 54-64. https://doi.org/10.22115/SCCE.2019.196533.1119.
- Jalilzadeh, A., Behzadi, S. (2020). Flood Mapping and Estimation of Flood Water-Level Using Fuzzy Method and Remote Sensing Imagery (Case Study: Golestan Province, Iran), Forum Geografic. University of Craiova, Department of Geography, pp. 165.
- Karayusufoglu, S., Eris, E., Coskun, H.G. (2010). Estimation of basin parameters and precipitation distribution of solalki basin, turkey. Wseas transactions on environment and development (5): 6.
- Kumar, A., Dhakhwa, S., Dikshit, A.K. (2022). Comparative Evaluation of Fitness of Interpolation Techniques of ArcGIS Using Leave-One-Out Scheme for Air Quality Mapping. Journal of Geovisualization and Spatial Analysis, 6(1): 1-11. https://doi.org/10.1007/s41651-022-00102-4.
- Liu, X. et al. (2022). Molecular-level understanding of metal ion retention in clay-rich materials. Nature Reviews Earth & Environment, 3(7): 461-476. https://doi.org/10.1038/s43017-022-00301-z.
- Longo-Minnolo, G., Vanella, D., Consoli, S., Pappalardo, S., Ramírez-Cuesta, J.M. (2022). Assessing the use of ERA5-Land reanalysis and spatial interpolation methods for retrieving precipitation estimates at basin scale. Atmospheric Research, 271: 106131. https://doi.org/10.1016/j.atmosres.2022.106131.
- Mahjoobi, M., Behzadi, S. (2022). Solar desalination site selection on the Caspian Sea coast using AHP and fuzzy logic methods. Modeling Earth Systems and Environment: 1-9. https://doi.org/10.1007/s40808-022-01418-2.
- Maris, F., Kitikidou, K., Angelidis, P., Potouridis, S. (2013). Kriging interpolation method for estimation of continuous spatial distribution of precipitation in Cyprus. Current Journal of Applied Science and Technology: 1286-1300.
- Mirzaei, R., Sakizadeh, M. (2016). Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Environmental Science and Pollution Research, 23(3): 2758-2769.
- Moral, F.J. (2010). Comparison of different geostatistical approaches to map climate variables: application to precipitation. International Journal of Climatology, 30(4): 620-631. https://doi.org/10.1002/joc.1913
- Njeban, H.S. (2018). Comparison and evaluation of GIS-based spatial interpolation methods for estimation groundwater level in AL-Salman District—Southwest Iraq. Journal of Geographic Information System, 10(4): 362.
- Papalexiou, S.M., AghaKouchak, A., Foufoula‐Georgiou, E. (2018). A diagnostic framework for understanding climatology of tails of hourly precipitation extremes in the United States. Water Resources Research, 54(9): 6725-6738. https://doi.org/10.1029/2018WR022732.
- Sun, Y., Kang, S., Li, F., Zhang, L. (2009). Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of northwest China. Environmental Modelling & Software, 24(10): 1163-1170. https://doi.org/10.1016/j.envsoft.2009.03.009.
- Triguero, I. et al. (2019). Transforming big data into smart data: An insight on the use of the k‐nearest neighbors algorithm to obtain quality data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(2): e1289. https://doi.org/10.1002/widm.1289.
- Yang, W. et al. (2020). Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of Xin’anjiang river in Huangshan, China. International journal of environmental research and public health, 17(8): 2942.
- Zhong, Q., Tong, D., Crosson, C., Zhang, Y. (2022). A GIS-based approach to assessing the capacity of rainwater harvesting for addressing outdoor irrigation. Landscape and Urban Planning, 223: 104416.
- Zou, W.-y., Yin, S.-q., Wang, W.-t. (2021). Spatial interpolation of the extreme hourly precipitation at different return levels in the Haihe River basin. Journal of Hydrology, 598: 126273. https://doi.org/10.1016/j.jhydrol.2021.126273.