The influence of vegetation on the microstructure and erosivity of precipitation
Vpliv vegetacije na mikrostrukturo in erozivnost padavin
- Avtorji: Lana Radulović, Nejc Bezak, Mojca Šraj
- Citat: Acta hydrotechnica, vol. 36, no. 64, pp. 57-79, 2023. https://doi.org/10.15292/acta.hydro.2023.04
- Povzetek: Proces prestrezanje padavin, pri katerem vegetacija zadržuje padavine, v veliki meri vpliva na naravne procese, kot je erozija tal. Za ovrednotenje tega vpliva so potrebne meritve mikrostrukture padavin s sodobno merilno opremo, ki omogoča spremljanje hitrosti, velikosti in števila dežnih kapljic. Podatke o mikrostrukturi padavin smo pridobili s pomočjo 1-minutnih meritev treh optičnih disdrometrov, nameščenih pod krošnjo breze, pod krošnjo črnega bora in nad krošnjami dreves. V obravnavanem obdobju med 12. julijem 2022 in 16. februarjem 2023 smo zabeležili 48 padavinskih dogodkov, za katere smo izračunali čas trajanja, količino padavin, povprečno intenziteto padavin in lastnosti dežnih kapljic, tj. velikost, hitrost in število kapljic. Dodatno smo izračunali še kinetično energijo (KE), maksimalno 30-minutno intenziteto (max I30) in dejavnik erozivnosti padavin (R). Vse omenjene spremenljivke smo izračunali za meritve nad krošnjami dreves in pod njimi. Rezultati kažejo, da se delež prestreženih padavin s časom trajanja dogodkov zmanjšuje tako pri brezi kot pri boru. Kapljice so se pri prehodu skozi drevesne krošnje v obdobju vegetacije v povprečju povečale, v obdobju mirovanja vegetacije pa zmanjšale. V celotnem obravnavanem obdobju se je premer kapljic v povprečju povečal pod brezo za 46 %, pod borom za 26 %. Hitrost kapljic se je pod borom v povprečju zmanjšala za 38 %, pod brezo pa povečala za 1 %, kar je posledica povečanja povprečne hitrosti pod brezo v obdobju mirovanja za 7 %. Analiza rezultatov kaže, da ima prestrezanje padavin velik vpliv na erozijo tal, saj se je npr. dejavnik erozivnosti padavin in odtoka (R) zaradi spremenjenih lastnosti kapljic zmanjšal pod brezo za 43 %, pod borom pa kar za 90 %.
- Ključne besede: Prestrezanje padavin, mikrostruktura padavin, disdrometer, erozivnost padavin, breza, črni bor, Slovenija.
- Polno besedilo: a36lr.pdf
- Viri:
- Alivio, M. B., Šraj, M., Bezak, N. (2023). Investigating the reduction of rainfall intensity beneath an urban deciduous tree canopy. Agric For Meteorol 342. https://doi.org/10.1016/j.agrformet.2023.109727.
- ARSO (2023). Sneg in obilne padavine med 15. in 20. januarjem 2023. Ljubljana.
- ARSO (2022). Obilne padavine in neurja med 15. in 17. septembrom 2022. Ljubljana.
- Bezak, N., Rusjan, S., Petan, S., Sodnik, J., Mikoš, M. (2015). Estimation of soil loss by the WATEM/SEDEM model using an automatic parameter estimation procedure. Environ Earth Sci 74(6), 5245–5261. https://doi.org/10.1007/s12665-015-4534-0.
- Blöschl, G. et al. (2019). Twenty-three unsolved problems in hydrology (UPH)–a community perspective. Hydrological Sciences Journal 64(10), 1141–1158. https://doi.org/10.1080/02626667.2019.1620507.
- Burt, T., Boardman, J., Foster, I., Howden, N. (2016). More rain, less soil: Long-term changes in rainfall intensity with climate change. Earth Surf Process Landf 41(4), 563–566. https://doi.org/10.1002/esp.3868.
- Frasson, R. P. de M., Krajewski, W. F. (2011). Characterization of the drop-size distribution and velocity-diameter relation of the throughfall under the maize canopy. Agric For Meteorol 151(9), 1244–1251. https://doi.org/10.1016/j.agrformet.2011.05.001.
- Green Infrastructure [WWW Document] (2018). . https://environment.ec.europa.eu/topics/nature-and-biodiversity/green-infrastructure_en.
- Hall, R. L., Calder, I. R. (1993). Drop size modification by forest canopies: Measurements using a disdrometer. Journal of Geophysical Research: Atmospheres 98(D10), 18465–18470. https://doi.org/10.1029/93JD01498.
- Kermavnar, J., Vilhar, U. (2017). Canopy precipitation interception in urban forests in relation to stand structure. Urban Ecosyst 20(6), 1373–1387. https://doi.org/10.1007/s11252-017-0689-7.
- Kirnbauer, M. C., Baetz, B. W., Kenney, W. A. (2013). Estimating the stormwater attenuation benefits derived from planting four monoculture species of deciduous trees on vacant and underutilized urban land parcels. Urban For Urban Green 12(3), 401–407. https://doi.org/10.1016/J.UFUG.2013.03.003.
- Levia, D. F., Hudson, S. A., Llorens, P., Nanko, K. (2017). Throughfall drop size distributions: a review and prospectus for future research. WIREs Water 4(4). https://doi.org/10.1002/wat2.1225.
- LI-COR (2023). LI-2200C Plant Canopy Analyzer [WWW Document]. https://www.licor.com/env/products/leaf_area/LAI-2200C/instrument.
- Nanko, K., Hotta, N., Suzuki, M. (2006). Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. J Hydrol (Amst) 329(3–4), 422–431. https://doi.org/10.1016/j.jhydrol.2006.02.036.
- Nanko, K., Hudson, S. A., Levia, D. F. (2016). Differences in throughfall drop size distributions in the presence and absence of foliage. Hydrological Sciences Journal 61(3), 620–627. https://doi.org/10.1080/02626667.2015.1052454.
- Nanko, K., Tanaka, N., Leuchner, M., Levia, D. F. (2020). Throughfall Erosivity in Relation to Drop Size and Crown Position: A Case Study from a Teak Plantation in Thailand, in: Levia, D. F., Carlyle-Moses, D. E., Iida, S., Michalzik, B., Nanko, Kazuki (Eds.), Forest-Water Interactions. Springer Nature Switzerland, 279–298. https://doi.org/10.1007/978-3-030-26086-6_12.
- OTT Hydromet (2016). Operating Instructions. Present weather sensor OTT Parsivel. [WWW Document]. URL http://www.ott.com/en-us/products/download/operating-instructions-present-weather-sensor-ott parsivel2/ (accessed 12.19.23).
- Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., Alewell, C. (2015). The new assessment of soil loss by water erosion in Europe. Environ Sci Policy 54, 438–447. https://doi.org/10.1016/j.envsci.2015.08.012.
- Petan, S., Rusjan, S., Vidmar, A., Mikoš, M. (2010). The rainfall kinetic energy–intensity relationship for rainfall erosivity estimation in the mediterranean part of Slovenia. J Hydrol (Amst) 391(3–4), 314–321. https://doi.org/10.1016/J.JHYDROL.2010.07.031.
- Radulović, L. (2023). Vpliv prestrezanja padavin na mikrostrukturo padavin. Univerza v Ljubljani, Ljubljana.
- Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., Yoder, D. C. (1997). Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Agricultural Handbook. U.S. Department of Agriculture, Washington.
- Resolucija o Strategiji prostorskega razvoja Slovenije 2050 [WWW Document] (2023). . https://www.uradni-list.si/glasilo-uradni-list-rs/vsebina/2023-01-2295/resolucija-o-strategiji-prostorskega-razvoja-slovenije-2050-respr50.
- UN Sustainable Development Goals [WWW Document] (2023). . https://www.un.org/sustainabledevelopment/sustainable-development-goals/.
- Zabret, K., Rakovec, J., Mikoš, M., Šraj, M. (2017). Influence of Raindrop Size Distribution on Throughfall Dynamics under Pine and Birch Trees at the Rainfall Event Level. Atmosphere (Basel) 8(12), 240. https://doi.org/10.3390/atmos8120240.
- Zabret, K., Rakovec, J., Šraj, M. (2018). Influence of meteorological variables on rainfall partitioning for deciduous and coniferous tree species in urban area. J Hydrol (Amst) 558, 29–41. https://doi.org/10.1016/j.jhydrol.2018.01.025.
- Zabret, K., Šraj, M. (2019). Rainfall Interception by Urban Trees and Their Impact on Potential Surface Runoff. Clean (Weinh) 47(8), 1800327. https://doi.org/10.1002/clen.201800327.
- Zabret, K., Šraj, M. (2018). Spatial variability of throughfall under single birch and pine tree canopies. Acta hydrotechnica 31(54), 1–20. https://doi.org/10.15292/acta.hydro.2018.01.
- Zabret, K., Šraj, M. (2015). Can Urban Trees Reduce the Impact of Climate Change on Storm Runoff? Urbani izziv 26(Supplement), S165–S178. https://doi.org/10.5379/urbani-izziv-en-2015-26-supplement-011.
- Zore, A., Bezak, N., Šraj, M. (2022). The influence of rainfall interception on the erosive power of raindrops under the birch tree. J Hydrol (Amst) 613. https://doi.org/10.1016/j.jhydrol.2022.128478.