Comparison of 1D, coupled 1D–2D, and 2D shallow water numerical modeling for dam-break flow analysis of Way-Ela dam, Indonesia
Primerjava 1D, povezanega 1D–2D modeliranja plitvih voda za analizo pretoka ob porušitvi jezu Way-Ela, Indonezija
- Avtorji: Metta Lim, Bobby Minola Ginting, Theo Senjaya, Christine Kieswanti
- Citat: Acta hydrotechnica, vol. 37, no. 66, pp. 27-50, 2024. https://doi.org/10.15292/acta.hydro.2024.02
- Povzetek: V tej študiji je analizirano območje poplavljanja z numeričnim modeliranjem plitvih voda s programsko opremo HEC-RAS 6.3, in sicer s primerjavo različnih pristopov: 1D, povezanega 1D–2D in 2D. Za študijo primera je izbran dogodek porušitve jezu Way-Ela v Indoneziji leta 2013. Jez Way-Ela se je naravno oblikoval zaradi zemeljskih plazov leta 2012, nato pa se je zaradi notranje erozije po močnem deževju porušil. Za oceno hidrograma odtoka ob porušitvi se uporablja empirični parametrični model, ki temelji na regresijski enačbi. Numerični rezultati v primerjavi z opazovanimi podatki kažejo, da 2D model podaja najnatančnejše rezultate, s sprejemljivim računskim časom, medtem ko 1D model, kljub časovni učinkovitosti izračuna, napačno izračuna obseg poplave. Povezani 1D–2D model poda podobne rezultate kot 2D model; vendar pa je pri povezanem pristopu čas izračuna bistveno daljši, čeprav se pričakuje, da bo računsko učinkovitejši od modela 2D. Podani so nekateri možni razlogi za to. Poleg tega so na več mestih predstavljene tudi primerjave za vodno gladino in hitrost in tako poudarjene razlike med različnimi modeli. Naše ugotovitve pomagajo pri izbiri ustreznega hidrodinamičnega modela za simulacije porušitve pregrad, pri čemer je treba poiskati pravo ravnovesje med natančnostjo rezultatov in stroški izračuna.
- Ključne besede: porušitev pregrade, HEC-RAS, Way-Ela, 1D modeliranje, povezano 1D–2D modeliranje, 2D modeliranje.
- Polno besedilo: a37ml.pdf
- Viri:
- Awal, R., Nakagawa, H., Fujita, M., Kawaike, K., Baba, Y., Zhang, H. (2011). Study on Piping Failure of Natural Dam. Journal of Japan Society of Civil Engineers 67(4), 157-162. https://doi.org/10.2208/jscejhe.67.I_157.
- Benazir, Triatmadja, R., Rahardjo, A.P., Yuwono, N. (2019). The Behavior of a Tsunami-like Wave Produced by Dam Break and its Run-up on 1:20 Slope. Science of Tsunami Hazards 38(2), 49-67.
- Betsholtz, A., Nordlöf, B. (2017). Potentials And Limitations Of 1D, 2D, And Coupled 1D–2D Flood Modelling In HEC-RAS. Thesis, Lund University. https://www.lunduniversity.lu.se/lup/publication/8904721.
- Bettiol, G.M., Ferreira, M.E., Motta, L.P., Cremon, É.H., Sano, E.E. (2021). Conformity Of the Nasadem_Hgt and ALOS Aw3d30 DEM with the Altitude from the Brazilian Geodetic Reference Stations: A Case Study from Brazilian Cerrado. Sensors 21(9), 2935. https://doi.org/10.3390/s21092935.
- Beven, K.J., Almeida, S., Aspinall, W.P., Bates, P.D., Blazkova, S., Borgomeo, E., Freer, J., Goda, K., Hall, J.W., Phillips, J.C. (2018). Epistemic Uncertainties and Natural Hazard Risk Assessment–Part 1: A Review of Different Natural Hazard Areas. Natural Hazard and Earth System Sciences 18, 2741-2768. https://doi.org/10.5194/nhess-18-2741-2018.
- Bhola, P.K., Leandro, J., Disse, M. (2018). Framework for Offline Flood Inundation Forecasts for Two-Dimensional Hydrodynamic Models. Geosciences 8(9), 346. https://doi.org/10.3390/geosciences8090346.
- BNPB (2013a). Sebagian Bendungan Way Ela Jebol. Available at: https://www.bnpb.go.id/berita/sebagaian-bendungan-way-ela-jebol (Accessed 12. 27. 23). (In Indonesian).
- BNPB (2013b). Status Awas Waduk Way Ela di Maluku, 4.817 Jiwa Harus Siaga. Available at: https://bnpb.go.id/berita/status-awas-waduk-way-ela-di-maluku-4-817-jiwa-harus-siaga (Accessed 12.27.23). (In Indonesian).
- Casulli, V. (2009). A High‐Resolution Wetting and Drying Algorithm for Free‐Surface Hydrodynamics. International Journal for Numerical Methods in Fluids 60(4), 391-408. https://doi.org/10.1002/fld.1896.
- Chinnarasri, C., Jirakitlerd, S., Wongwises, S. (2004). Embankment Dam Breach and Its Outflow Characteristics. Civil Engineering and Environmental Systems 21(4), 247-264. https://doi.org/10.1080/10286600412331328622.
- Chymyrov, A. (2021). Comparison of Different DEMs For Hydrological Studies in The Mountainous Areas. The Egyptian Journal of Remote Sensing and Space Sciences 24(3), 587-594. https://doi.org/10.1016/j.ejrs.2021.08.001.
- Cook, A.C. (2008). Comparison of One-Dimensional HEC-RAS with Two-Dimensional FESWMS Model in Flood Inundation Mapping. Thesis. Purdue University. https://web.ics.purdue.edu/~vmerwade/reports/2008_02.pdf.
- Costa, J.E., Schuster, R.L. (1987). The Formation and Failure of Natural Dams, Open File Report, U.S. Geological Survey. https://doi.org/10.3133/ofr87392.
- Chanson, H. (2006). Analytical Solutions of Laminar and Turbulent Dam Break Wave. River Flow 2006: Proceeding of International Conference on Fluvial Hydraulics, Taylor & Francis, London, 465-474.
- Dasallas, L., Kim, Y., An, H. (2019). Case Study of HEC-RAS 1D–2D Coupling Simulation: 2002 Baeksan Flood Event in Korea. Water 11(10), 2048. https://doi.org/10.3390/w11102048.
- Detik (2013). Bendungan Way Ela di Maluku Tengah Jebol, 1 Orang Tewas dan 32 Terluka. Available at: https://news.detik.com/berita/d-2314491/bendungan-way-ela-di-maluku-tengah-jebol-1-orang-tewas-dan-32-terluka (Accessed 2.27.24). (In Indonesian).
- Dressler, R. (1954). Comparison of Theories and Experiments for the Hydraulic Dam-break Wave. Proceeding of International Association of Scientific Hydrology Assemblée Générale, Rome, Italy, 3(38), 319-328.
- FEMA (2013). Federal Guidelines for Inundation Mapping of Flood Risks Associated with Dam Incidents and Failures, Federal Emergency Management Agency, US Department of Homeland Security, Washington D.C. https://www.fema.gov/sites/default/files/2020-08/fema_dam-safety_inundation-mapping-flood-risks.pdf.
- Froehlich, D.C. (2008). Embankment Dam Breach Parameters and Their Uncertainties. Journal of Hydraulic Engineering 134(12), 1708-1721. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:12(1708).
- Froehlich, D.C. (1995). Embankment Dam Breach Parameters Revisited. Proceeding of the first International Conference sponsored by the Water Resources Engineering Division of the American Society of Civil Engineer, San Antonio, Volume 1, 887-891.
- Gharbi, M., Soualmia, A., Dartus, D., Masbernat, L. (2016). Comparison of 1D and 2D Hydraulic Models for Floods Simulation on the Medjerda River in Tunisia. Journal of Materials and Environmental Science 7(8), 3017-3026.
- Ginting, B.M. (2019). Central-Upwind Scheme for 2D Turbulent Shallow Flows Using High-Resolution Meshes with Scalable Wall Functions. Computers & Fluids 179, 394-421. https://doi.org/10.1016/j.compfluid.2018.11.014.
- Ginting, B.M., Ginting, H. (2020). Extension Of Artificial Viscosity Technique for Solving 2D Non-Hydrostatic Shallow Water Equations. European Journal of Mechanics - B/Fluids 80, 92-111. https://doi.org/10.1016/j.euromechflu.2019.12.002.
- Ginting, B.M., Lidyana, P., Christopher, C., Yudianto, D., Yuebo, X. (2024). Evaluating The Satellite-Derived DEM Accuracy with Rain-On-Grid Modeling for Flood Hydrograph Prediction of Katulampa Watershed, Indonesia. International Journal of River Basin Management, 1-18. https://doi.org/10.1080/15715124.2024.2312857.
- Ginting, B.M., Lidyana, P., Christopher, C., Yudianto, D., Yuebo, X. (2023). Comparison of Flood Hydrograph Prediction Between Synthetic Unit Hydrograph Methods and Rain-On-Grid Model for Katulampa Watershed, Indonesia. Acta hydrotechnica 36(64), 81-94. https://doi.org/10.15292/acta.hydro.2023.05.
- Ginting, B.M., Riyanto, B.A., Ginting, H. (2013). Numerical Simulation of Dam Break Using Finite Volume Method Case Study of Situ Gintung. Proceeding of 4th International Seminar of HATHI, Yogyakarta, 195-206.
- Julzarika, A., Harintaka, (2019). Indonesian DEMNAS: DSM or DTM?. Proceeding of 2019 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), Jakarta, 31–36. https://doi.org/10.1109/AGERS48446.2019.9034351.
- Kobayashi, D., Uchida, T. (2022). Experimental and Numerical Investigation of Breaking Bores in Straight and Meandering Channels with Different Froude Numbers. Coastal Engineering Journal 64(3), 442-457. https://doi.org/10.1080/21664250.2022.2118431.
- Kieswanti, C. (2023). Comparison Of Several Breaching Empirical Formulas for Dam-Break Propagation Analysis of Way Ela Dam, Ambon, Indonesia. Thesis. Parahyangan Catholic University.
- Liputan 6 (2019). Mengenang Tragedi Subuh Situ Gintung. Available at: https://www.liputan6.com/news/read/3926859 (Accessed 4.17.24). (in Indonesian).
- Lorenzo, G.D., Macchione, F. (2014). Formulas for the Peak Discharge from Breached Earthfill Dams. Journal of Hydraulic Engineering 140(1), 56-67. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000796.
- Macdonald, T.C., Langridge-Monopolis, J. (1984). Breaching Characteristics of Dam Failures. Journal of Hydraulic Engineering 110(5), 567-586. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:5(567).
- Mark, O., Weesakul, S., Apirumanekul, C., Aroonnet, S.B., Djordjević, S. (2004). Potential and Limitations of 1D Modelling of Urban Flooding. Journal of Hydrology 299(3-4), 284-299. https://doi.org/10.1016/j.jhydrol.2004.08.014.
- Nabilah, R.A., Sutjiningsih, D., Anggraheni, E., Murniningsih, S. (2020). Dam Break Analysis of Situ Gintung Dam Collapse Reconstruction. IOP Conference Series: Earth and Environmental Science, Volume 599, 2nd International Conference on Green Energy and Environment, Bangka Belitung Islands, Volume 599. https://doi.org/10.1088/1755-1315/599/1/012064.
- Patel, D.P., Ramirez, J.A., Srivastava, P.K., Bray, M., Han, D. (2017). Assessment of Flood Inundation Mapping of Surat City by Coupled 1D/2D Hydrodynamic Modeling: A Case Application of The New HEC-RAS 5. Natural Hazards 89, 93-130. https://doi.org/10.1007/s11069-017-2956-6.
- Rachmadan, L.C. (2014). Analisa Keruntuhan Bendungan Alam Way Ela dengan Menggunakan Program Zhong Xing HY21. Thesis. Brawijaya University. (In Indonesian). http://repository.ub.ac.id/id/eprint/142457.
- Ritter, A. (1892). Die Fortpflanzung der Wasserwellen. Zeitschrift des Vereines Deutscher Ingenieure 36, 947-954. (In German).
- Salahuddin, S., Maricar, F., Lopa, R.T., Hatta, M.P. (2021). Debris Flow Velocity Due to The Collapse of Natural Dam, Proceeding of the 5th International Symposium on Infrastructure Development, Makassar Volume 841. https://doi.org/10.1088/1755-1315/841/1/012015.
- Sebastian, A., Juan, A., Bedient,P. B. (2022). Chapter 5 - Urban Flood Modeling: Perspectives, Challenges, and Opportunities. Coastal Flood Risk Reduction 47-60, https://doi.org/10.1016/B978-0-323-85251-7.00005-6.
- Singh, K.P., Snorrason, A. (1984). Sensitivity of Outflow Peaks and Flood Stages to the Selection of Dam Breach Parameters and Simulation Models. Journal of Hydrology 68(1-4), 295-310. https://doi.org/10.1016/0022-1694(84)90217-8.
- Suneth, M.N., Pattiselano, A.E., Adam, F.P. (2016). Strategi Adaptasi Ekologi (Studi Kasus Bencana Alam Way Ela di Desa Negeri Lima Kecamatan Leihitu Kabupaten Maluku Tengah). Jurnal Agrilan 4(2), 26-40. (In Indonesian).
- Takaku, J., Tadono, T., Doutsu, M., Ohgushi, F., Kai, H., 2020. Updates Of Aw3d30’ ALOS Global Digital Surface Model with Other Open Access Datasets. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 43, 183-190. https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-183-2020.
- Tayefi, V., Lane, S.N., Hardy, R.J., Yu, D. (2007). A Comparison of One‐ And Two‐Dimensional Approaches to Modelling Flood Inundation Over Complex Upland Floodplains. Hydrological Processes 21(23), 3190-3202. https://doi.org/10.1002/hyp.6523.
- Tesema, T.A. (2021). Impact of Identical Digital Elevation Model Resolution and Sources on Morphometric Parameters of Tena Watershed, Ethiopia. Heliyon 7(11). https://doi.org/10.1016/j.heliyon.2021.e08345.
- The Japan Aerospace Exploration Agency (JAXA) (2006). ALOS: Advanced Land Observing Satellite. Available at: https://www.eorc.jaxa.jp/ALOS/en/index_e.htm (Accessed 12.10.23).
- USACE (2023a). Hydrologic Engineering Center, HEC-RAS, 1D Vs. 2D Hydraulic Modeling. US Army Corps of Engineers, Davis, CA.
- USACE (2023b). Hydrologic Engineering Center, HEC-RAS, HEC-RAS 2D User’s Manual. US Army Corps of Engineers, Davis, CA.
- USACE (2016). Hydrologic Engineering Center, HEC-RAS, River Analysis System Hydraulic Reference Manual. US Army Corps of Engineers, Davis, CA.
- Uuemaa, E., Ahi, S., Montibeller, B., Muru, M., Kmoch, Al. (2020). Vertical Accuracy of Freely Available Global Digi-Tal Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sensing 12(21), 3482. https://doi.org/10.3390/rs12213482.
- Vojinovic, Z., Tutulic, D. (2009). On The Use of 1D and Coupled 1D–2D Modelling Approaches for Assessment of Flood Damage in Urban Areas. Urban Water Journal 6(3), 183-199. https://doi.org/10.1080/15730620802566877.
- Von Thun, J.L., Gillette, D.R. (1990). Guidance on Breach Parameters. U.S. Bureau of Reclamation: Denver, CO, USA.
- Wisyanto, Naryanto, H.S. (2022). Analysis of Landslides and the Formation of Way Ela Natural Dam, Negeri Lima, Leihitu, Central Maluku. Jurnal Sains dan Teknologi Mitigasi Bencana 16(2), 30-39. https://doi.org/10.29122/jstmb.v16i2.5391. (In Indonesian).
- Wu, W., Marsooli, R., He, Z. (2012). Depth-Averaged Two-Dimensional Model of Unsteady Flow and Sediment Transport due to Noncohesive Embankment Break/Breaching. Journal of Hydraulic Engineering 138(6), 503-516. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000546.
- Xu, Y., Zhang, L.M. (2009). Breaching Parameters for Earth and Rockfill Dams. Journal of Geotechnical and Geoenvironmental Engineering 135(12), 1957-1970. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000162.
- Yakti, B.P., Adityawan, M.B., Hadihardaja, I.K., Suryadi, Y., Nugroho, J., Adi Kuntoro, A. (2019). Analysis of Flood Propagation and Its Impact on Negeri Lima Village Due to The Failure of Way Ela Dam. MATEC Web Conferences, Volume 270, 2nd Conference for Civil Engineering Research Networks, Bandung, Volume 270. https://doi.org/10.1051/matecconf/201927004011.
- Yudianto, D., Ginting, B.M., Sanjaya, S., Rusli, S.R., Wicaksono, A. (2021). A Framework of Dam-Break Hazard Risk Mapping for A Data-Sparse Region in Indonesia. International Journal of Geo-information 10(3). https://doi.org/10.3390/ijgi10030110.
- Zhong, Q., Wu, W., Chen, S., Wang, M. (2016). Comparison of Simplified Physically Based Dam Breach Models. Natural Hazards 84, 1385-1418. https://doi.org/10.1007/s11069-016-2492-9.