Numerical study of highly efficient centrifugal cyclones
Numerična študija visokoučinkovitih centrifugalnih ciklonov
- Avtorji: Murodil Madaliev, Zokhidjon Abdulkhaev, Yunusali Khusanov, Saxiba Mirzababayeva, Zebuniso Abobakirova
- Citat: Acta hydrotechnica, vol. 37, no. 67, pp. 143-157, 2024. https://doi.org/10.15292/acta.hydro.2024.08
- Povzetek: Centrifugalni cikloni se že stoletja razvijajo za obdelavo procesnih tokov, vendar njihova učinkovitost pri odstranjevanju drobnega prahu ostaja pod 80 %. Široka uporaba ciklonov v različnih panogah je posledica njihove preproste zasnove in zanesljivega delovanja. Proces znotraj ciklonov je zapleten znanstveni problem in v okviru aerohidromehanike ostaja nerešen, kar dokazuje raznolikost modelov. Trenutna raven učinkovitosti ciklonskega čiščenja procesnih tokov ne ustreza sanitarnim standardom in bistveno vpliva na onesnaženost okolja. Članek primerja različne konfiguracije centrifugalnih ciklonov, vključno s cikloni brez vijakov, z vijakom enakomernega koraka in z vijakom spremenljivega koraka, ki uravnava zasuk toka. Numerične simulacije so bile izvedene z uporabo programskega paketa Comsol Multiphysics 5.6 z uporabo modela turbulence SST. Dobljeni numerični podatki kažejo, da je izkoristek ciklona z vijakom spremenljivega koraka bistveno večji kot pri ciklonih brez vijakov in cikloni z vijakom enakomernega koraka.
- Ključne besede: Ciklon, matematično modeliranje, turbulenčni modeli, Reynoldsovo povprečene Navier-Stokesove enačbe.
- Polno besedilo: a37mm.pdf
- Viri:
- Agullo, E., Giraud, L., Guermouche, A., Haidar, A., Roman, J. (2013). Parallel algebraic domain decomposition solver for the solution of augmented systems. Adv. Eng. Softw. 60, 23–30. https://doi.org/10.1016/j.advengsoft.2012.07.004.
- Avci, A., Karagoz, I. (2003). Effects of flow and geometrical parameters on the collection efficiency in cyclone separators. J. Aerosol Sci. 34(7), 937–955. https://doi.org/10.1016/S0021-8502(03)00054-5.
- Brar, L. S., Sharma, R. P., Dwivedi, R. (2015). Effect of vortex finder diameter on flow field and collection efficiency of cyclone separators. Part. Sci. Technol. 33(1), 34–40. https://doi.org/10.1080/02726351.2014.933144.
- Chuah, T. G., Gimbun, J., Choong, T. S. Y. (2006). A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics. Powder Technol. 162(2), 126–132. https://doi.org/10.1016/j.powtec.2005.12.010.
- “COMSOL Modeling Software”. COMSOL.com. Comsol, Inc. Retrieved [WWW Document] (2015).
- Hoekstra, A. J. (2000). Gas flow field and collection efficiency of cyclone separators. TU Delft, Ph. D. Thesis, Delft Univ. Technol.
- Hoffmann, A. C., De Groot, M., Peng, W., Dries, H. W. A., Kater, J. (2001). Advantages and risks in increasing cyclone separator length. AIChE J. 47(11), 2452–2460. https://doi.org/10.1002/aic.690471109.
- Hsu, C.-W., Huang, S.-H., Lin, C.-W., Hsiao, T.-C., Lin, W.-Y., Chen, C.-C. (2014). An experimental study on performance improvement of the stairmand cyclone design. Aerosol Air Qual. Res. 14(3), 1003–1016. https://doi.org/10.4209/aaqr.2013.04.0129.
- Kuzmin, D., Löhner, R., Turek, S. (2012). Flux-corrected transport: principles, algorithms, and applications. Springer Science & Business Media.
- Lee, J. W., Yang, H. J., Lee, D. Y. (2006). Effect of the cylinder shape of a long-coned cyclone on the stable flow-field establishment. Powder Technol. 165(1), 30–38. https://doi.org/10.1016/j.powtec.2006.03.011.
- Malikov, Z. M., Madaliev, M. E. (2020). Numerical Simulation of Two-Phase Flow in a Centrifugal Separator. Fluid Dyn. 55(8), 1012–1028. https://doi.org/10.1134/S0015462820080066.
- Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605. https://doi.org/10.2514/3.12149.
- Smirnov, P. E., Menter, F. R. (2009). Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart–Shur correction term. J. Turbomach. 131(4): 041010. https://doi.org/10.1115/1.3070573.
- Son, E., Murodil, M. (2020). Numerical calculation of an air centrifugal separator based on the SARC turbulence model. J. Appl. Comput. Mech. 6(Special Issue), 1133–1140. https://doi.org/10.22055/jacm.2020.31423.1871.
- Spalart, P. R., Rumsey, C. L. (2007). Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA J. 45(10), 2544–2553. https://doi.org/10.2514/1.29373.
- Surmen, A., Avci, A., Karamangil, M. I. (2011). Prediction of the maximum-efficiency cyclone length for a cyclone with a tangential entry. Powder Technol. 207(1–3), 1–8. https://doi.org/10.1016/j.powtec.2010.10.002.
- Wei, J., Zhang, H., Wang, Y., Wen, Z., Yao, B., Dong, J. (2017). The gas-solid flow characteristics of cyclones. Powder Technol. 308, 178–192. https://doi.org/10.1016/j.powtec.2016.11.044.
- Xiang, R. B., Lee, K. W. (2005). Numerical study of flow field in cyclones of different height. Chem. Eng. Process. Process Intensif. 44(8), 877–883. https://doi.org/10.1016/j.cep.2004.09.006.
- Zhu, Y., Lee, K. W. (1999). Experimental study on small cyclones operating at high flowrates. J. Aerosol Sci. 30(10), 1303–1315. https://doi.org/10.1016/S0021-8502(99)00024-5.
- Zlochevsky, V. L., Mukhopad, K. A. (2015). Analysis of air flow formation in a cyclone. South Siberian Scientific Bulletin (4), 5–13.
- Kuznetsov, S. I., Mikhailik, V. D., Rusanov, S. A. (2009). Modeling the operation of a highly efficient cyclone-rotary dust collector. Bulletin of Kherson National Technical University (3), 36.
- Tarasova, L. A. (2010). Improving the technological efficiency of vortex-type devices in gas cleaning systems (Doctoral dissertation, Moscow State University of Environmental Engineering).